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STATEMENT OF THE PROBLEM STUDIED

The goal of the present research was to address key issues of vorticity dynamics prior
to, during, and after the initiation of dynamic stall and to develop a fundamental
understanding of the physical phenomena taking place. The two major thrusts of the
research were (1) to investigate the applicability of indicial theory to the theoretical
prediction of dynamic stall, and (2) to analyze the Reynolds number scaling of key events in
the dynamic stall process, at laminar Reynolds numbers significantly higher than could
previously be computed.

The basic idea behind the first portion of this work is founded on recent evidence that
unsteady separated flow may be linearizable with respect to its boundary condition, in a
manner similar to linearization techniques used in unsteady transonic flow. This similarity
(i.e., a nonlinear mean with time-linearizable unsteady component) suggests the
applicability of powerful analytical tools such as linear and nonlinear indicial theory. The
applicability of indicial theory to key aspects of the vorticity dynamics of dynamic stall
could provide the basis for a fast prediction method. By its construction, this predictive
capability would be semi-analytic and fast-running, making it well-suited for design and for
flight simulation methods.

The second portion of this work focused on the Reynolds number scaling of incipient
leading edge stall. It has been suggested that eruptive plumes of vorticity might play a
critical role in the physics of vortex initiation/formation during leading edge dynamic stall.
Numerical simulations at low Reynolds number do not seem to adequately predict this
phenomenon. To explore the possibility of a "bifurcation” in Reynolds number, the scaling
of incipient laminar separation, of vortex formation, and of shedding with respect to
Reynolds number was investigated in detail . Navier-Stokes simulations were used to study
a model problem in which a two-dimensional airfoil remains stationary at angle-of-attack,
but for which the leading edge flow separates as a result of an impulsively applied no-slip
boundary condition.

SUMMARY OF MOST IMPORTANT RESULTS

The research performed under the present contract followed two paths. The first phase
of the work (April 92 to August 93) was concerned with the validation of indicial theoretical
concepts as applied to the prediction of the vorticity dynamics of dynamic stall. The second
phase of the work (January 94 to June 94) was an investigation into high Reynolds number
(up to 800,000, based on chord) leading edge vortical laminar flow phenomena related to
stall, based on a model problem. The technical results are summarized in the appendices.
Appendices A and B are copies of technical papers from conference proceedings.
Appendices C and D contain previously unreported results .




Indicial Theory and the Prediction of Dynamic Stall

Following the proposal for this work (Ref. 1), the first portion of this study began with
the analysis of a pitching airfoil at a chord Reynolds number of 1,000. This Reynolds
number was found to be too low, for several reasons. The first one is that this case does not
simulate the leading edge type of stall that is of practical interest. The second one is that it
does not exhibit the presence of eruptive plumes of vorticity which could be critical to the
initiation of dynamic stall. The third reason is that, at low Reynolds numbers, the airfoil
flow is always separated to varying degrees for fixed angle of attack, thus undermining the
whole idea of applying indicial theory up to and in the vicinity of an effective bifurcation of
the leading edge vorticity dynamics. Here, "bifurcation” refers to a hypothetical separation
between a boundary layer-type of vorticity transport and a new mode of vorticity transport
(normal to the wall) associated with the appearance of an eruptive plume of vorticity.>?

Successful validation of indicial theory was immediately achieved at Re = 1,000 under
conditions of high frequency (wc/2U,, ~ 10) and low amplitudes (i.e., fractions of a degree).
However, for larger amplitude motions (Aax = O(5°)) and/or higher Reynolds number
(Re = 12,000), application of linear indicial theory in its original form failed. The reasons for
the failure were as follows: (1) the flow response is statically nonlinear when the airfoil is
beyond static stall; (2) the incremental asymptotic flow response to an elementary change in
the boundary conditions is inherently unsteady (chaotic) at the higher Reynolds numbers.
Indicial theory does not address either of these situations. :

In view of these findings, the second portion of the research concentrated on the
development and validation of a modified version of indicial theory which was designed to
circumvent the above problems. The resulting characteristic/indicial approach uses the
- response to a reference large amplitude motion which is analyzed and processed in the

Laplace domain to infer an equivalent, re-scaled "indicial” function designated as the
“characteristic response” of the system. The characteristic response can then be convoluted
with the time derivative of the motion history to predict the flow response to arbitrary
schedules of the boundary condition (g, in this case). In essence, successful prediction using
the Laplace domain characteristic method signifies, in a system exhibiting quasi-static
amplitude nonlinearity, that the phase dynamics can still be treated linearly. This is, of
course, the essence of the generalized superposition integral which underlies the entire
formulation. Alternatively, the new method can be interpreted as the straight-forward -
application of indicial concepts, using a re-scaled indicial function, determined from the
knowledge of the finite (rather than infinitesimal) response of the flow. This "stretching"”
takes into account quasi-static nonlinearity and retains the linear formalism of indicial
theory.

By extending an essentially linear tool well into the nonlinear regime, loss of generality .
has been incurred. In the present case, the prediction method was shown to be reasonably
accurate for a class of airfoil motions with arbitrary schedule a(t) all having the same initial
and final angles of attack. Specifically, the time history of the vorticity accumulation
(defined over a small control volume at the leading edge of the airfoil) was shown to be
predicted accurately by the theory for different pitch rates (including oscillatory motion),
provided that the indicial function is inferred from the difference between the flow
responses associated with any two airfoil motions a(t) mentioned above. This new
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approach was validated at Re = 12,000 for a variety of pitching motions between a = 10°
and a = 15°.

Under these conditions, reasonable predictive accuracy can be obtained (on the order
of 10 to 15% on the vorticity fluxes). Typical results are given in Appendix A. To obtain
higher accuracy, two avenues of research were considered. The first one is to extend the
Laplace-domain formalism to nonlinear indicial theory. Efforts in this direction were
undertaken towards the end of the second funding increment of this contract. As a first
step, these efforts were specifically directed towards a piecewise linear version of the
method. However, this method was not sufficiently validated, due to lack of time and to
changes in research priorities for the second phase of this work (Jan. 94 through June 94).
The second avenue of research involved the separation of deterministic (motion-related)
and chaotic portions of the predicted signals. One of the difficulties associated with the
application of the prediction method to laminar single-realization cases was the presence of
significant chaotic fluctuations associated with vorticity dynamics downstream of the
leading edge region. The chaotic unsteady effects are, to a large degree, uncorrelated with
the change in boundary condition, Aa(t). In particular, the method can only predict the
deterministic component of the flow response. For instance, for sufficiently large times, the
predicted increment response Ay (between two finite-amplitude motions having same final
angle-of-attack) equals zero, since the input Aa to the method is zero for a time exceeding
the length of the convolution. Yet, for sufficiently large Reynolds number, Ap(t) # 0. This is
expected of deterministic methods with finite "memory." A similar problem was found in
the artificial neural network predictions of Faller et al. (Ref. 2), for large times. Since this
aspect of the prediction cannot be circumvented, a search for candidate dynamic stall
"indicators" was undertaken. The basic idea is that, if Ap(t) is small, the prediction error will
also be small. Thus, a suitable indicator must have the property that, in response to the
airfoil motion, its time-history should exhibit a strong degree of determinism with respect
to Aa(t).

The applicability of indicial theory hinges on the existence of flow quantities whose
temporal behavior remains smooth throughout dynamic stall. A result of this research is
that vorticity accumulation appears to be a suitable candidate as a dynamic stall "indicator"
in which the deterministic (motion-related) component is dominant. Vorticity accumulation
also happens to be predicted well by indicial theory as modified in this work. The
applicability of the modified theory indicates that the phase dynamics are linear, and that a
generalized superposition integral can be used to construct phase lags from elementary
responses.

Reynolds Number Effects on a Model Problem of Leading Edge Stall

The study of a model problem was considered in which an airfoil is initially
maintained at a fixed angle-of-attack (& = 15°). A converged Navier-Stokes solution which
is free of separation is obtained by using the zero-vorticity slip boundary condition. At
some time t = 0, the no-slip boundary condition is impulsively turned on. The resulting
developing flowfield is characterized by the complete absence of trailing edge stall, the
existence of a well-defined time origin, and the independence of the initial condition on
Reynolds number. This problem was originally conceived of in the initial part of the work,
in order to mimic certain physical aspects of high Reynolds number flow in low Reynolds
number simulations. In particular, this approach circumvents the "contamination" of the
leading edge flow due to reverse flow emanating from the trailing edge region.




Incidentally, the properties of the flowfield associated with this model problem are also
advantageous for the detailed study of the very initial stages of dynamic stall, as well as for
the investigation of scaling effects with Reynolds number.

High Reynolds number laminar flow remains a difficult area of research. From a
computational point of view, the currently accepted highest chord Reynolds number at
which grid-independent results can be obtained is Re = 100,000.3 With the present model
problem and using a high-order differencing code, grid-converged solutions of the two-
dimensional Navier-Stokes equations were obtained up to Re = 800,000. The importance of
the high Reynolds number laminar research for dynamic stall stems from high Reynolds
number asymptotics4 and interacting boundary layer research®® which suggest that
eruptive plumes of vorticity may form in the leading edge boundary layer and act as a
triggering mechanism leading to the formation of the primary dynamic stall vortex. Such
eruptions (which differ from the standard vortex-induced eruption) have not yet been found
in numerical solutions of the Navier-Stokes equations. A prevalent point of view® (and a
strong possibility) is that, in an Eulerian reference frame, the mesh spacing to resolve this
phenomenon cannot be afforded. Another possibility is that some form of bifurcation takes
place at some intermediate, laminar Reynolds number. Since most numerical calculations
are at low Reynolds number, the effects of viscosity may dissipate any tendency to
spontaneously form these eruptive plumes. The main idea behind an analysis of the
Reynolds scaling of key events in the dynamic stall process is that the emergence of new

physics -even if poorly resolved- would result in modified scaling properties with respect to -

Reynolds number.

A high-order accuracy finite difference code was used for this part of the investigation.
The code uses eighth-order spatial accuracy on the convective fluxes, on the metrics, and on
the artificial dissipation, while retaining fourth-order accuracy on the viscous terms. The
numerical method allows for the accurate resolution of a wavenumber range in each spatial
direction equivalent to 80% of the wavenumber range for pseudo-spectral methods. Thus

the required number of grid points is substantially reduced, compared to a standard second- -

order code. A more detailed description of the code can be found in Appendices C and D.
High order accuracy was a critical element which permitted the extension of the model
problem studies to Reynolds numbers considerably larger than previously possible.

At least two distinct stages of the incipient separation process were found. Stage |
corresponds to the formation of a separation zone ('lifting" of the thin primary vorticity
layer) which is initially symmetric about the location of maximum boundary layer thickness.
This stage was found to exhibit qualitatively self-similar behavior over the investigated
Reynolds number range (50,000 = Re < 800,000, M_, = 0.2), and ends with the accumulation
of vorticity in the reattachment region of the separated vorticity layer. In Stage II, the
accumulated vorticity develops into a vortex which subsequently induces a sequence of
rapid events, including the formation of secondary flow and, at high Reynolds number,
successive shear layer vortices which themselves induce secondary and tertiary flow
patterns. This stage is the most difficult to compute, and issues of adequacy of the
numerical resolution, diffusion of the vortices, and steepness of the induced pressure
gradients are critical. At high Reynolds numbers, a second order method would be
extremely expensive if it were to capture the essential physics.

At the beginning of this portion of the research, a number of important research issues
were raised, in particular with respect to the relevance and applicability of high Reynolds
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number asymptotic theory and interacting boundary layer calculation results (see, e.g.,
Ref. 5). The theory suggests the development of a tightly focused narrowing band eruption
in the boundary layer. This eruption is a generic boundary layer response to a moving
adverse pressure gradient zone outside the boundary layer. The presence of a vortex-
induced eruption in Stage II is well-established, and has been observed in the present
calculations at Re = 100,000, 200,000, 400,000, and 800,000. Knight and Choudhuri’s results’
exhibit similar behavior at a Reynolds number as low as Re = 10,000. There is also reason to
believe that this type of eruption would presumably also have taken place here at
Re = 50,000, had the calculations been carried out further in time. However, no eruption
was ever observed during Stage I of the flow development, nor could an eruption
(bifurcation) be inferred from the basic Reynolds number scaling properties of the flow.

The present results indicate a smooth scaling behavior over the Reynolds number
range 50,000 = Re = 800,000 in Stage I, and the well-defined emergence, from the lifting
vorticity layer, of a topological "center" which precedes vortex formation. Qualitatively
similar behavior was observed at all investigated Reynolds numbers. Furthermore, when
taking into account the viscous scaling of the Stokes layer and/or boundary layer upstream,
the specific dynamical events associated with incipient stall (such as the times of onset of
primary and secondary separation bubbles, and of vortex formation) were found to scale
according to simple power laws of the Reynolds number, Re™, with 0.11 = n s 0.45. Self-
similarity was also observed for the time of occurrence of vortex-induced eruptions
(marking the onset of shedding of the primary stall vortex), between the Reynolds numbers
of 50,000 and 400,000. At Re = 800,000, new physics associated with complex interactions
between vortices take place in the vicinity of the wall before the time of eruption. However,
no qualitative changes were observed in Stage I.

The present results contradict the hypothesis that a form of bifurcation must take place
at some intermediate laminar Reynolds number during Stage |, i.e., before the formation of
a vortex To reconcile these results with the implications of interacting boundary layer
theory, one of several conjectures may be made. These conjectures are listed below.

The first one concerns the Reynolds number of the simulations. Although Re = 800,000
goes beyond the traditionally accepted Re = 100,000 limit for laminar calculations of
dynamic stall, the fact remains that this is a low Reynolds number flow. The Reynolds
number range based on leading edge radius, b, was 3,250 = Re}, = 12,800. Based on
boundary layer thickness (851 g) and freestream velocity, the Reynolds number range was:
46 < Rey s 186. These are, of course, extremely low Reynolds numbers, compared to those
considered in the high Reynolds number asymptotics and interacting boundary layer
studies.

The second conjecture, also related to the Reynolds number, is that if a Reynolds
number bifurcation in Stage I should occur, it will take place at a Reynolds number higher
than those investigated in this study. It is, therefore, likely that transition and turbulence
will be present. The effects of transition and turbulence could overwhelm the bifurcation
phenomenon, thus making it very difficult to discern. Calculations at chord Reynolds
numbers larger than 800,000 were not attempted in this study, in part because transition to
turbulence may take place within the thin free shear layers. Although the present resolution
is sufficient to resolve the primary Kelvin-Helmholz instability (at least, for the primary free
shear layer), the present calculations are no longer accurate when three-dimensional
instabilities are present.
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The third conjecture is that a self-focusing plume of vorticity must exist at the leading
edge within the investigated Reynolds number range. In this scenario, the reason why this
was not observed is because the phenomenon is subscale and cannot be resolved by Eulerian
means. Although this is a theoretical possibility, experience teaches us that some sign of
"activity," be it instability or other phenomenon, would have been visible in the calculations,
especially since an eighth-order code was used. No such sign was discovered in any of the
present calculations. Grid convergence was attained at all Reynolds numbers, and further
grid refinements were not attempted. The prospect of further increasing grid resolution to
repeat the same results was considered unproductive and risky; therefore, this avenue of
research was not pursued.

The fourth conjecture pertains to the absence of a moving region of adverse pressure
gradient. The physics of formation of eruptive plumes of vorticity are described by the high
Reynolds number asymptotics and interacting boundary layer studies.%> These studies
specifically address the response of the boundary layer to a moving zone of adverse
pressure gradient. In the present semi-impulsive problem at fixed angle of attack, there is

- very little temporal change in the leading edge pressure gradient. Except for an initial
relaxation of the pressure gradient after imposing the no-slip condition, the region of
adverse pressure gradient does not undergo any significant motion. This is different from a
pitching airfoil situation. Whether or not this is significant is something that could be
systematically investigated by superimposing a pitching motion to the present problem.
However, this route was not pursued within the time frame of this study, for two reasons.
The first one is the fact that vortex-induced eruptions take place, even though the motion of
the vortex is very slight: the temporal strengthening of the circulation associated with the
vortex appears to be by far the largest contributor. The second reason is that, if one
considers the time scales involved for the entire process to complete (say, up to the point of
shedding of the primary stall vortex), these correspond to only a fraction of a degree for a
realistic airfoil motion. For example, for a hypothetical oscillatory motion at Re = 800,000 at
a reduced frequency k = wc/2U = 0.02 with a motion amplitude of 5¢, the change in angle of
attack, Aa, from initiation to shedding, equals 0.014°. This would not be expected to
produce any significant motion of the zone of adverse pressure gradient.

Finally, the results presented here suggest that the behavior of the flow started to
change at Re = 800,000. Although these differences occurred in Stage II, it is useful to
consider the broader picture and attempt to speculate as to what happens at higher
Reynolds numbers. At Re = 800,000, a vortex-induced eruption takes place virtually
underneath a merged primary vortex, as opposed to taking place between consecutive .
primary and shear layer vortices. The result is a fundamental change from a bulk
convection of the vortex system at low Reynolds numbers to a sudden break-away from the
surface at a point in time when the entire vortex system is confined to the leading edge
region. As the Reynolds number becomes larger, the artificial distinction between Stages I
and II will be blurred and not realistic. Transition effects will likely replace the elongated
Jlaminar bubble of Stage I by transitional and turbulent flow structures in the close proximity
of the wall. If this is the case, the broader issue is to determine the conditions under which
eruption of vorticity occurs if, as suggested by the present results, such an eruption acts as
the trigger for vortex shedding.
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f Flow response

F  Frequency

k Reduced frequency (k= (2nFc)/(2U))

L  Laplace transform

LE. LeadingEdge

M, Freestream Mach number

Re Chord Reynolds number (Re=U_c/v,)

s Curvilinear (tangential) airfoil coordinate
00=ss510)

Complex Laplace variable

Non-dimensional time (t = tU_/¢c)

Ramp time (non-dimensionalized with U,
and ¢)

Streamwise velocity

Freestream velocity

Normal velocity

Streamwise coordinate

Generic spatial coordinate

Normal coordinate

Coordinate locally perpendicular to the airfoil
surface

Angle of attack (in degrees unless otherwise

specified)

@ X Ix < -~
= .c::: -]
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Mountain View, CA
ABSTRACT ¢  Forcing function
A Variation
Direct numerical simulations are used to analyze A¢  Phase transfer function (A¢ = A¢(w))
in detail the vorticity dynamics of the leading edge ® Total vorticity flux (convective and viscous)
region of a NACA0012 airfoil pitched about its @  Vorticity flux angle
1/4 chord. The results presented in this paper illustrate g Flow response (generic notation)
how the formalism of indicial theory can be used to #, Indicial function (generic)
- predict the integrated vorticity fluxes and the vorticity v Fluid kinematic viscosity
accumulation during unsteady maneuver. In particular, p  Fluid density
the flow response to large amplitude non-linear motions t  Timelag
is shown to be predicted reasonably accurately, provided @  Reduced angular frequency (@ = 2nFc/U)
that the indicial functions of the flow are inferred in the 0 Vorticity
Laplace domain and stretched to account for quasi-static ¢  Time variable for a predefined motion a({)
non-linearity. The implication of this work is the Subscripts .
possibility of developing a fast semi-analytical prediction e  Evaluated at the outside edge of the boundary
method for incipient leading edge stall, which will be layer
accurate within certain classes of maneuvers. o  Initial condition
n  Normal
t . Tangential
NOMENCLATURE "~ ®  Freestream value
Superscri
Symbols -1 Inverse
A Amplitude transfer function (A = A(w)) -~ Indicial function
A, Quasi-static amplitude (Ag = A(0)) * Accumulation
c Airfoil chord +  Non-dimensional
const. Constant - Dimensional
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
INTRODUCTION

The past two decades have seen a considerable
amount of resources spent towards resolving the
problem of dynamic stall. Despite some progress in both
numerical prediction! and experimental®® techniques,
there are still too many unknowns to ensure successful
transfer of this knowledge from basic research to applied
research and exploratory development. A case in point
is the design of helicopter rotor blades, which makes
little use of dynamic stall results. Ideally, a successful
blade design might be one which could benefit from the
dynamic lift effect, without experiencing the enhanced
torsional fatigue caused by shedding of a dynamic stall
vortex.

The inability of the research community to provide
designers involved in the aerodynamics of unsteady
lifting surfaces with the appropriate tools is, without a
doubt, related to the difficulty of the problem at hand
and has been a source of constant frustration. The
current understanding of the complex physics involved
in dynamic stall is limited by such difficult and inter-



related issues as three-dimensionality* and transition to
turbulence (e.g., moving wall® effects), as well as
fundamental scaling issues with Reynolds number® and
additional physics introduced by compressibility effects?

The basic idea behind the work presented in this
paper is founded on recent evidence’ that unsteady
separated flow may be linearizable with respect to its
boundary condition, in a manner similar to unsteady
transonic flow.® This similarity (i.e., a non-linear mean
flow with time-linearizable unsteady component)
suggests the applicability of powerful analytical tools
such as linear and non-linear indicial theory.%1011 The
applicability of indicial theory to dynamic stall, or its
applicability to some key aspect of the vorticity
dynamics associated with the dynamic stall process,
could provide the basic element of a fast prediction
method. By its construction, this predictive capability
would be semi-analytic,”-® making it well-suited for
design and for flight simulation techniques.

OBJECTIVE AND APPROACH

The objective of this work is to attempt to either
prove or disprove the applicability of the indicial
theoretical concept, as applied to the dynamic stall
process. The approach is to use direct numerical
simulations (DNS) of dynamic stall for a well-
documented two-dimensional configuration: that of a
NACAQ012 airfoil in pitch about the 1/4 chord position.
Since indicial theory (summarized below) is applied here
to the physics of incipient unsteady separation, it is
essential that turbulence models (which would
unavoidably "contaminate” the physics which are the
very object of this analysis) be eliminated. Therefore, as
a first step, the Reynolds numbers considered here are
low (Re = 1,000, Re = 12,000, and, in a model problem,
Re = 100,000), corresponding to laminar flow conditions.

The analysis is based on the hypothesis that the
cause of dynamic stall is linked to the disparate
characteristic times for the various physical processes
that take place. The effect of the disparity in time scales
is such that, for a given pitch rate, the following
processes occur: i) at some critical time, the vorticity
accumulated throughout the airfoil motion exceeds the
maximum allowable for vorticity transport through an
attached boundary layer model; at that time, normal
vorticity transport component becomes important, and
ii) the normal vorticity transport component is confined
to a vortex feeding sheet or a sharply defined shear layer
which may lead to the formation of the vortex. In steady
flow the separation may start from a shear layer but
rapidly becomes chaotic. In the dynamic case the time
lags may allow the sustained development, or stability,
of the vortex sheet, such that a vortex is formed. Once
formed, the vortex may interact with the boundary layer
below it, eventually giving rise to an eruptive plume of
vorticity. The result of this eruption is to free the
dynamic stall vortex from its feeding sheet, which is
followed by the rapid convection of the vortex over the
surface.

A key addition to this idea comes from recent
work” in which it was found that if an impulsive change
is given to the flow around a cylinder, the transient
value of the shed vorticity flux at short times is
considerably larger than the value for steady flow. It is
noteworthy that the hypothesis that time lags are
responsible for the delayed breakup of the vortex sheet is
consistent with the findings of Henk et al.}? who
experimentally examined unsteady separated flows in a
water tunnel.

Unlike pure Computational Fluid Dynamical
(CFD) approaches, which, like experiments, produce
numbers (but not necessarily insight), and are too
expensive, the semi-analytical approach outlined below
provides a guide to physical understanding since it
allows the identification of cause and effect relationships.

Indicial Method. The present approach is based on the
com:ept3 that a characteristic flow variable f(x,t), which
describes the state of the flow, can be linearized with
respect to its boundary condition, £(t), if the variation of
f(x,t) is a smooth function of £(t). Since, in general,
separation is a non-linear process, the function f(x,t)
must be such that its variation with £(t) is smooth
through separation; this allows the representation of
f(x,t) in a Taylor series about some value of g, £.; thus

+ o o .
E=E,

If f(;,O) is zero (a zero initial condition), then an
approximate solution is

- - of
f(x,t) f(x,0) + At % (1)

. oAl
T

£(x,t) Ae ()

E=E,

Equation (2) is an approximation which becomes more
accurate as Az +0. Also, Eq. (2) is exact if f(xt) is a linear
function of £(t). If (2) is satisfied, then it can be shown®
that a formal solution for f(x,t) is

t
£(x,t) = F(x,t)e(0) - ] 1‘%"-’- fx,ndr  (3)
]

where

F(x,t)

4)

af
e

Hence, if the forcing function (i.e., the boundary
condition €) is known and if f (the "indicial function”) is
known from some computation, then Eq. (3) gives the
value of f(x,t) for any schedule of boundary conditions &(t)
without the need to compute f from first principles. This
has the effect of reducing computational requirements
considerably. Furthermore, Eq. (3) is a semi-analytic
relation between f(x,t) and its boundary condition &(t)
which can give insight into the physical process
involved.

If applicable, the formalism of the theory
represented by Eq. (3) allows insight into the character of
dynamic stall even though the actual details of the
response are unknown. The analysis outlined above



illustrates the power of the method, a power that is
greatly enhanced if details of the response are computed.

It may be difficult to comprehend how a linear
equation can represent the non-linear behavior of
separation, and therefore it is useful to illustrate how this
concept represents an example of unsteady separated
flow; in this case, the flow around an oscillating cylinder.
This example is based on work published in Ref. 7 which
shows that it is possible to predict the time-dependent
characteristics of separation location and vorticity flux,
based on the knowledge of the impulse response of the
flowfield only. Previous experience with the application
of indicial theory to the prediction of non-linear
transonic flow® indicates that while the overall process
may be non-linear, quantities which vary smoothly
throughout the change in boundary condition can be
accurately predicted using indicial theory. This applies
in particular to integral quantities such as overall loads,
provided that the topology of the flowfield does not
change (e.g., appearance or disappearance of shock
waves).

Hence, the applicability of the indicial method to
dymamic stall hinges on the existence of quantities which
remain smooth throughout the phenomena associated
with dynamic stall. As will be shown in the Results
Section below, vorticity fluxes in the leading edge region
appear to satisfy this requirement. Furthermore, even in
the hypothetical case (not treated here) where a flow
quantity of interest should undergo some form of
bifurcation, the only requirement for predicting the onset
of dynamic stall is that its unsteady component behave
piecewise linearly on one side of (i.e., prior to) this
bifurcation. For example, if the so-called vorticity
eruption phenomenon'415 at the leading edge
constitutes a bifurcation point, then the previous
theoretical developments apply only to the physics of the
flow up to the vorticity eruption process.

In order to effectively predict dynamic stall using
indicial theory, two separate but related objectives must
be achieved. First, the applicability of indicial theory
must be demonstrated. Second, and in the event that the
demonstration is successful, proof must be given that the
flow quantity(ies) to which the theory applies are indeed
precursors of the phenomenon itself. While some results
towards this second objective (not shown here) are
currently being obtained as part of the contract
supporting this work, the limited objective of the present
paper is to prove or disprove the applicability of indicial
theory to the problem of incipient dynamic stall.

RESULTS

All calculations presented in this paper have been
performed with a modified version of NASA Ames’
ARC2D6 time-implicit finite difference computer code.
Two computational grids were used: a 169 x 51 grid for
the Re = 1,000 case and a 169 x 80 for the Re = 12,000
case. Details of the latter grid (O-mesh) are shown in
Fig. 1 for the trailing and leading edge regions of the

airfoil. Fig. 1(b) illustrates the tangential clustering of
the mesh in the region between 0 and 2 percent of chord
from the leading edge. Also shown (grey shaded area) is
a control volume over which integrated tangential and
normal fluxes of the vorticity are computed and stored at
each time step. A typical result (in which only a subset
of flow vectors has been shown for clarity) appears in
Fig. 2.

Although most of the quantitative results
presented in this paper are for the Re = 1,000 and
Re = 12,000 cases (M_, =0.2), sample results for a model
problem related to dynamic stall (Re = 100,000, M_=0.1)
will be presented first. The purpose of this model
problem (described below) is to remove some of the
complications and simplify the problem, in order to
isolate relevant physics and better understand the
vorticity dynamics associated with "incipient” dynamic
stall.

Model Problem

In the absence of compressibility effects, vorticity
may only enter the flowfield by viscous diffusion from
the boundary of the airfoil. The amount of vorticity is
dictated by the tangential pressure gradient in the
vicinity of the leading edge.'”18 This pressure gradient
would be maximized at any angle of attack if the flow
remained completely attached such as in potential flow.
In reality, the pressure gradient is "relieved” by flow
separation, which acts to augment the effective leading
edge radius "seen” by the outer potential flow. This idea
is also based on corroborating evidence in stall
experiments at high pitch rate, which show that the
formation of a leading edge recirculation is delayed, thus
creating a flowfield at the leading edge which initially
“resembles” potential flow.

To approximate this condition, vorticity-free
boundary conditions were implemented, resulting in
steady initial conditions which were free of separation
(see for example Fig. 3). At some initial time denoted
t = 0, the no-slip boundary condition is impulsively
applied. The vorticity field that rapidly develops after
the imposition of the no-slip condition results in
dynamic stall within a fraction of the convective time
scale. The existence of a well-defined time origin for the
various dynamical processes, the absence of a laminar
bubble prior to stall, and the absence of any trailing edge
separation are the key ingredients of the model problem.
In addition, the initial conditions are independent of
Reynolds number. The resulting unsteady flowfield
(which will be the topic of a forthcoming AIAA Paper!?)
shares many of the characteristics of high Reynolds
number, high pitch rate dynamic stall, with the exception
of moving-wall and apparent mass effects.

The results shown in Figs. 4 and 5 illustrate the
evolution of the vorticity field at successive instants of
time shortly after turning on the no-slip boundary
condition. Detailed analyses of the unsteady flowfield at
@ = 45° and a = 30° (not shown here) indicate that
leading edge separation occurs extremely rapidly, and




that the process is essentially "smooth” in terms of
vorticity dynamics. The surface flow topology
corresponding to a = 30¢ is shown in Fig. 6(a)
(Re = 100,000), where the lines demarcate regions of
forward and reverse flow along the airfoil surface. This
is contrasted to the Re = 1,000 case (Fig. 6(b), same scale)
which exhibits neither shedding (indicated by oblique
pairs of lines in Fig. 6(a)) nor secondary separation over
the shown time interval (0.0 s tU_/c 5 0.1). Secondary
separation at Re = 1,000 occurs some later time (see
Fig. 7(b)) and, hence, the overall time scale for the onset
of dynamic stall is larger both at the lower Reynolds
numbers (see Fig. 6) and for lower angles of attack (note
the doubling of the horizontal scale between the cases in
Fig. 7). Such conditions are better suited for the purpose
of detailed temporal analyses of vorticity fluxes and
accumulation. Consequently the remainder of this paper
is devoted to the low Reynolds number flowfields
(Re = 1,000 and Re = 12,000) as a test bed for the
applicability of indicial theory to the prediction of
incipient dynamic stall.

A comparison of the time evolution of tangential
and normal fluxes of the vorticity (for the control volume
depicted in Fig. 1(b)) is shown in Fig. 8. Each line
corresponds to the flux at a given (tangential or normal)
position; the arrow indicates the direction of increasing
coordinate. The fluxes are seen to peak and decay
smoothly. An equivalent "flux angle,” 8, at a fixed
tangential location central to the control volume can be
defined at each of the normal coordinates as
@ = tan"}(®,/®,). Vorticity accumulation (not shown
here) peaks at approximately tU_/c =0.003. This is
followed by a gradual "turn” (see Fig. 8(c)) of the
convective vorticity flux from a direction tangential to
the surface (8 = 0°) to an inclination ® approaching 45°.
While qualitatively similar peak-and-decay behavior of
both normal and tangential vorticity fluxes was also
observed for the case of real dynamic stall during steady
pitch-up (da*/dt = 0.6), the overall time scales
(consistent with the results of Fig. 8) are typically larger
than in the model problem at a = 45°.

Validation of Indicial Theory

Having tentatively established the relative
smoothness of the leading edge vorticity dynamics prior
to, during, and immediately after the onset of dynamic
stall, we now turn to some direct attempts at the
validation of indicial theory. This section is divided into
three parts. In the first part, validation of indicial theory
is performed using small amplitude steps in the
boundary conditions to determine the indicial responses
of the flow directly. The second part details the
implementation of indicial theory using a Laplace
domain approach applicable to large amplitude (i.e.,
several degrees) motion, including cases where
amplitude non-linearity is important. In the third part of
the results, the accuracy of the proposed method is
evaluated by inverting back to the time domain, and is
applied to angular motions between @ = 10® and a = 15°
at a Reynolds number Re = 12,000.

Part 1: Direct Validation, Re = 1,000.

For the purpose of the present paper, only a
limited set of conditions are considered, involving small
oscillations about two angles of attack: a = 16° and
a =30*. The Mach and Reynolds numbers (respectively
M_ = 0.2 and Re = 1,000) are fixed, and two types of
indicial responses are computed. The conventional
determination of an indicial function involves
performing a step in the boundary condition (in this
case, @) and recording the response, say A®, or AQ". For
t > 0, A®,(t)/Aa is the indicial response of ®, with respect
to its boundary condition a in the infinitesimal limit
Aa -+ 0. For the case of a body in motion, it is more
relevant to consider the dynamic indicial response,
calculated as the Fréchet derivative™! of ®, with respect
toa:

- _ M, (L)
or_(a(t)xt,t) = 1lim —-2-.;— (5)

o [a(§)+H({-v)Aa) - e falf)] 1

= lim [ Ad

Aa-»0

where the step in boundary condition, Aa, is applied at
some time t = T, and H designates the Heaviside step
function. The simple case of a ramp-and-hold motion is
schematically illustrated in Fig. 9. For example, to obtain
the dynamic indicial response on the 1ift, two lift
responses, say to motions (a) and (b) in Fig. 9, are
differenced and normalized by the magnitude of the
step, Aa. The difference between maneuvers (a) and (b)
(at 16°) or (c) and (d) (at 30*) will be referred hereafter
as the "indicial maneuver" or "indicial motion." In this
Part 1 of the validation results, the step magnitude is
small, consistent with the theory, and typically on the
order of one tenth of one degree, or less.

Figure 10 compares indicial theoretical predictions
(lines) and direct numerical simulation results (symbols)
for both phase and amplitude of the fluctuating
tangential vorticity flux. The direct numerical
simulations involve ramping the airfoil from a = 0° to
a =16 at a constant pitch rate, da*/dt = 0.6. When the
airfoil reaches the end of the ramp, it starts oscillating at
a reduced angular frequency w. The phase (A¢) and
amplitude (A) of the tangential flux response at
2% chord, A®,(t), are measured after 5 or 6 cycles of the
oscillation (to eliminate transient effects). Both A¢ and A
are defined relative to their quasi-static counterpart. The
lines represent indicial theoretical predictions, assuming
a single frequency oscillatory input, £(1) = Aa x €'*T.
The dotted line corresponds to the prediction, Eq. (3),
using the dynamic indicial response. The solid line
corresponds to the same theoretical prediction using the
static indicial response (dashed line in Fig. 9). The
symbols are the result of direct numerical simulations for
airfoil harmonic oscillations about a = 16°. The circles
are associated with ramp-and-oscillate maneuvers, while
the triangle corresponds to the case of an oscillation
started from a steady angle of attack. For both types of
maneuvers, the comparison is seen to be excellent.

A similar comparison (a = 16*) is given in Fig. 11
for the phase and amplitude of the vorticity



accumulation, 0", between direct numerical simulations
and the indicial theoretical prediction. The direct
numerical simulations require each on the order of a
half-hour to an hour on a CRAY Y-MP; whereas, the
indicial theoretical prediction takes 30 seconds on a
VAX-780 for 100 frequencies. As in Fig. 10, theory and
numerical experiment agree well. But when the same
experiment is repeated (Figure 12) for a hold-angle of
30 ((c) and (d) in Fig. 9), the agreement with indicial
theory is poor. The non-linearity of the vorticity
accumulation manifests itself in the form of a low
frequency modulation superimposed on the basic forcing
frequency (see inset of Fig. 12). A major difference
between a = 16° (Figs. 10 and 11) and a = 30° (Fig. 12) is
that the flow is asymptotically unsteady for the latter.
At the low Reynolds number considered here, the
solution at & = 16° is steady. It is important to realize,
however, that for larger Reynolds numbers, for example
Re = 12,000 and beyond, the flow is both separated (to
varying degrees) and unsteady af all angles of attack.
Asymptotic (large time) unsteadiness per se does not
preclude the use of indicial theory. However, it was
found in the case of Fig. 12 that the indicial function itself
(calculated from the relative response between
maneuvers (c) and (d)) does not converge to steady state,
a situation to which indicial theory does not apply.!

To circumvent this difficulty and extend the range
of validity of indicial theory, a method was sought to
increase the amplitude of the "indicial maneuver.” The
rationale behind this approach can be described as
follows. Since the chaotic dynamics which "contaminate”
the indicial responses are an inherent, insuppressible,
feature of the flow at large Reynolds numbers and large
angles of attack, a possible approach is to attempt
instead to minimize the pseudo-random or chaotic
component of the response. This can be achieved by
maximizing the deterministic portion of the flow
response through the use of large amplitude indicial
motions. Of course there will be an upper limit to this
approach, as one gets into the non-linear regime. In
effect, the new approach (explained below, Part 2) relies
on "finite amplitude” (say on the order of several
degrees), rather than infinitesimal, indicial maneuvers.
These are used to infer indicial responses in which the
non-deterministic component is kept to a minimum.

Part 2: Laplace Domain Approach.

There are several difficulties associated with the
calculation of finite step responses using CFD. Most
often, CFD codes will not run for these conditions, except
for the smallest of step sizes and, even so, using very
small time steps. Even if a stable solution can be
obtained, its accuracy is dubious because such changes in
the boundary conditions are not consistent with the
temporal and spatial orders of accuracy of the numerical
methods being used 2 Furthermore, the flow responses
can be non-physical, introducing for example transient
shocks and piston effects which are absent in the real
flow. As mentioned previously, it stands to reason that
indicial theory cannot be used when the physics
contained in the indicial response(s) of the system differ

from the physics of the cases to be predicted. Thus, a
straight-forward time domain application of the theory,
as stated in Eqgs. (3) to (5), cannot be realized unless the
indicial motion approximates an infinitesimal step. To
remedy this problem, we now consider the Laplace
domain version of the indicial formalism.

The Laplace transform of Eq. (3) is given by

£(s) = sf(a)e(a) (6)

where(s), £(s),... designate the Laplace transforms of f,
¢, etc., respectively. Keeping in mind that fand &
represent changes with respect to a base line maneuver
(denoted "1"), Eq: (6) can be inverted as follows-

-1 #a(8) N, (8)
E(t) = g (t) = L l-s- CAOEA D) (7N
where L designates the Laplace operator. In (7),
maneuver "1" is characterized by the boundary condition
schedule £,(t) and by the absolute flow response #®;
maneuver "2" is characterized by {cz(t),pz(t)} which
differs from {€,(t),,(0)} after time t = 0 (see Figure 13).
Naturally, one recovers the original formulation for

£5(t) = £y(t) + AeH(t) (8

with A& = const. In this case: £5(s)-£,(s) = Ae/s and,
obviously: g, (t) = Au(t)/Ag, which is the analog of Eq. (5)
when (1) is exact. In the general case, however, note that,
if Eq. (7) is used, £, and &, need not differ by a constant
(see Fig. 13), nor does their difference need to be
infinitesimal, which is the basis of the present method 2!

The validation of the Laplace domain-based
method, Egs. (3) and (7), is first shown for low angles of
attack with trailing edge flow separation (Re = 12,000,
M_ =0.2). To illustrate how the method works, consider
Figs. 14 and 15. Both maneuvers smoothly ramp-up the
angle of attack by a whole degree, froma=4° toa = 5e.
Figure 14 depicts the history of the tangential vorticity
flux for the airfoil at rest (curve "1"), for the ramped
motion (curve "2"), and for the differential response "2"-
*1"). The motion is the same fifth order polynomial ramp
as in Refs. 20 and 21, chosen primarily for its smoothness
(zero first and second derivatives at the end points). The
motions considered in Figs. 14 and 15 differ only by the
overall length of the ramp, or "ramp time,” denoted T.
Figure 14 depicts the case of a “fast" maneuver (T =0.1),
and Fig. 15 that of a maneuver taking place overa period
40 times longer (T = 4). Note that the difference curve
("2"-"1") in Fig. 14 is not the indicial response, but a so-
called characteristic response from which the indicial
response can be inferred, using (7). The goal is to
evaluate whether the slow response (T = 4) can be
predicted from the application of indicial theory, when
using the indicial function inferred from the fast
maneuver (Fig. 14).

Figure 16 compares the result of the direct
numerical simulations to the Laplace domain indicial
prediction. Two pairs of curves are shown in the figure.
In each pair, one curve represents the flux Laplace




transform from DNS and the other its prediction by the
indicial method. For T = 4, the prediction is based, as
previously mentioned, on an indicial function inferred
from the T = 0.1 maneuver. The two curves are virtually
indistinguishable from one another over the entire
Laplace spectrum, with the exception of the largest
values of s (corresponding to the short time scales). The
agreement is equally good for the second curve pair
shown in Fig. 16, which illustrates the prediction
accuracy for the fast maneuver, based on an indicial
function inferred from the slow one (Fig. 15). This is, of
course, to be expected for a system which would be

perfectly linear.

In Figures 14 through 16, the motions that were
considered were all of the same amplitude: Aa =1°. In
contrast, if one attempts to use the indicial function
inferred from T = 0.1 (Fig. 14) to predict a large
amplitude maneuver from a = 4° to a = 8¢, the quality
of the prediction deteriorates significantly. This is
indicated in Fig. 17 by the spread between DNS and
prediction for s < 1. Note that all four curves in Fig. 17
are parallel to each other at small s and are, in fact,
proportional to 1/s. Therefore, the source of the
discrepancy for large time is caused by amplitude non-
linearity of the static response. In effect, the linear
assumption that the increment in steady vorticity flux
between a = 4° and a = 8¢ is four times that between
a=4¢ and a =5* breaks down, even at these low angles
of attack. This is to be expected for any angle change
other than infinitesimal since, even for an attached flat
plate boundary layer, the vorticity flux is proportional
to U2, In other words, the flow response must be non-
linear. Given these facts, the question that the remainder
of this paper attempts to answer is: to what extent can
the formalism of indicial theory be used to predict the
flow? And, if necessary, how must the theory be
amended to handle the cases of interest?

In Fig. 18, the accurate prediction of the large
amplitude case shown in Fig. 17 is achieved by using
indicial theory based on an equivalent indicial response
which is inferred from a large amplitude ramp
maneuver, from a = 4 to a = 8* (T = 0.4). This indicial
maneuver differs in two ways from that considered
previously: 1) the ramp time is T = 0.4 (instead of T = 0.1)
because of limitations of the code (maximum da*/dt),
and 2) the amplitude of the motion (Ax = 4°) is now the
same as the motion to be predicted. Making the
amplitudes the same will, evidently, take care of the
previous discrepancy due to quasi-static non-linearity.
What the comparison of Fig. 18 shows, however, is that,
once quasi-static amplitude non-linearity is taken into
account, the unsteady phase lags are predicted
accurately using the formalism of indicial theory. In
other words, the unsteady component of the flow
behaves almost linearly if the indicial function is
appropriately stretched in amplitude. Since the
comparisons of Figs. 16 and 18 are only along the real
axis of the Laplace domain, they are to be regarded only
" as an indication that indicial theory, used in the above
manner, can predict the vorticity dynamics of the flow.
The real proof of concept must involve all of the Laplace

domain information (i.e., inversion back to the time-
domain) and must apply to the case where leading edge
separation is present. This validation exercise is the
object of Part 3.

Part 3: Validation of the Laplace Domain-Based
Approach, Re = 12,000.

In this section, the implementation of indicial
theory as described in Part 2 is attempted for airfoil
pitching motions ranging from a = 10° to a = 15¢. For
all of these cases, the Reynolds number is Re = 12,000,
and the freestream Mach number is M_, = 0.2. Figure 19
illustrates the angular motions under consideration.
These are characterized by the total ramp time, T, in the
case of ramp-up or ramp-down motions, or by the
frequency, F, in the case of oscillations (an equivalency
between the two can also be defined by considering the
first half of the oscillatory cycle to correspond to a
smooth ramp, and vice-versa). The maneuver
characteristics are summarized in Table 1, along with the
airfoil motions considered in Part 2.

a(®) T k=nFc/U,, (da*/dt) pay
4 to 5 0.1 15.70 0.327
4.0 0.39 0.008
4 to 8 0.4 3.93 0.327
4.0 0.39 0.033
10 to 15 0.5 3.14 0.327
0.7 2.24 0.234
2.0 0.78 0.082
2.5 0.63 0.065
8.0 0.20 0.020

Table 1. Summary of Airfoil Motion Conditions

In the examples considered here, the various
maneuvers are all referenced to the fastest ramp-up
(T = 0.5) motion in Fig. 19. This means that the raw
vorticity flux or vorticity accumulation responses are all
processed so that the relative flow response is defined
with respect to the case T = 0.5. For example, the relative
vorticity accumulation, 8@, for T = 2.5 is defined as:

88'(t) = O35 - ¥ras ®
and so on. It is this relative flow quantity that the
indicial theory attempts to predict, in response to the
relative change in angle of attack, éa, defined as:

dat) = aruy 5 - aTaos (10)
The relative angle of attack variation is the input to the
indicial prediction, and is shown in Fig. 20 (solid line).
The other lines in Fig. 20 represent the relative motion,

&a, for the various ramp times and frequencies shown in
Fig. 19.

Before discussing the results of the prediction
method, an example of the computed flowfields being
analyzed is shown in Fig. 21. Figure 21 depicts contours
of the primary vorticity at two time instants during a



typical pitch-up maneuver (T = 0.5). The flowfield
solutions are rotated in the same reference frame for
comparison purposes (the equations of motion are
solved in an inertial frame of reference in which the
airfoil is rotated). Figure 21 illustrates a typical result,
obtained using the computational grid shown in Fig. 1.
The vorticity contours at t = 0.4 (80% into the maneuver)
suggest the presence of an essentially attached shear
layer (dashed lines) at the leading edge. The layer
separates and rolls into a vortex some time later (solid
lines), as is illustrated by the topological changes seen in
Fig. 21.

The changes in the integrated vorticity fluxes and
vorticity accumulation at the leading edge during
vortical lift-off and roll-up have been examined in detail.
Typical prediction accuracy is shown in Figs. 22
through 24.

Figures 22, 23, and 24 compare the DNS results for
vorticity accumulation (solid line) to the indicial
theoretical prediction (dashed line). The latter was
transformed to the time domain by using a numerical
inverse Laplace transform technique based on Laguerre
functions.Z The prediction is obtained using the method
described in Part 2, where the indicial function is
inferred in the Laplace domain from an indicial motion
(indicial "pulse,” in the present case) corresponding to
the difference between the two fastest ramps, T = 0.5 and
T = 0.7. This indicial motion is shown as the short
negative pulse in Fig. 20. Figure 22 compares the
vorticity accumulation between DNS and prediction for
a ramp-up motion with T = 2.5. The prediction is
reasonably accurate at short times and even appears to
capture some of the details of the flow response up to
t=25.

At large times, there are intrinsic, pseudo-random,

fluctuations due to vortex shedding and other chaotic_

phenomena in the flow. Thus, the relative response is

inherently unsteady, even long after the motion has

ceased. This form of unsteadiness is uncorrelated with
the motion itself. Recall that the predictions shown here
are for single realizations. The use of phase-averaging
on multiple realizations would presumably average out
the non-deterministic portion of the signal and increase
the accuracy of the prediction. Note that the prediction
itself is based on a single realization of ramp maneuvers
T =0.5and T =0.7. Again, realization averaging would
be desirable to increase the accuracy of the prediction.
The latter can only predict the deterministic unsteadiness
caused by changes in the boundary conditions, éa. In
the present case, realization averaging was too expensive
(using CFD-generated results), and was simulated
instead by filtering out the fluctuating component of the
indicial response for t > 3.2 (recall that the indicial
motion is completely over (da = 0)by t=0.7).

In spite of the pseudo-random component of the
fluctuation response, the accuracy of the prediction
during the initial portion of the motion is clearly
illustrated, both in the ramp cases, Figs. 22 and 23, and in
the oscillatory case, Fig. 24. The slight undershoot and

overshoot of the prediction for t = 0.7 are believed to be
related to the accuracy of the inverse Laplace transform
procedure, which is itself an approximation. The
consistency with which even small scale fluctuations are
initially captured by the indicial prediction in all three

- figures (22, 23, and 24) suggests that these fluctuations

are deterministic in nature and, therefore, can be
predicted using indicial theory, as described in Part 2.
Even at large times, the indicial theoretical prediction
appears to capture the essential features of the flow
response. For example, Fig. 24, the phase, amplitude,
and mean of the oscillatory vorticity accumulation
appear to be predicted reasonably well.

CONCLUDING REMARKS

Direct numerical simulations have been used to
investigate whether indicial theory could be applied to
the prediction of certain key aspects (vorticity dynamics
characteristics) associated with dynamic stall.

Preliminary results at low Reynolds number
(Re s 12,000) and low Mach number suggest that
integrated vorticity fluxes and vorticity accumulation at
the leading edge are essentially smooth functions of their
boundary condition. Based on this observation, the
applicability of indicial theory was first evaluated
directly in the time domain using step responses to
calculate the indicial functions of the flow. For small
motion amplitudes and high frequency, unsteady
vorticity fluxes and accumulation were found to be
predicted well by indicial theory.

For finite amplitude airfoil motions, large angles of
attack, and/or larger Reynolds numbers, the straight
forward application of indicial theory gave poor
predictions. To circumvent some of the problems
encountered under these conditions, a Laplace domain-
based method using finite amplitude indicial motions
was implemented and tested for linear and non-linear
airfoil motions. For large amplitude (Aa = 5°) non-linear
maneuvers, it is shown that the linear formalism of
indicial theory can be retained, provided that the indicial
functions are inferred in the Laplace domain from a
reference indicial motion having the same amplitude. In
other words, the unsteady component of the flow
behaves almost linearly if the indicial function is
appropriately stretched in amplitude.
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A STUDY OF REYNOLDS NUMBER EFFECTS ON INCIPIENT
LEADING EDGE STALL
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ABSTRACT

It has been suggested that eruptive plumes of
vorticity might play a critical role in the physics of
vortex formation during leading edge dynamic stall.
Numerical simulations at low Reynolds number do not
seem to adequately predict this phenomenon. To
explore the possibility of a "bifurcation” in Reynolds
number, we investigate in detail the scaling of incipient
laminar separation, vortex formation, and shedding with
respect to Reynolds number. Numerical simulations are
used to study a model problem in which a two-
dimensional airfoil remains stationary at angle-of-attack,
but for which the leading edge flow separates as a result
of an impulsively applied no-slip boundary condition.
The calculations are laminar (50,000 s Re s 400,000), and
are performed for @ =15° and M_=0.2. The resulting
surface flow topology is analyzed as a function of
Reynolds number. The results obtained thus far appear
to contradict the hypothesis that a form of bifurcation

takes place at some intermediate laminar Reynolds-

number. Furthermore, times and locations for the onset
of separation bubbles, vortex formation, and feeding
sheet rupture are found to scale according to various

ower laws of the Reynolds number, Re ™, with
0.11 s n < 0.45.

NOMENCLATURE

Symbols and Abbreviations
c Airfoil chord
const. Constant
CFD Computational Fluid Dynamics
C;  Skin friction coefficient (C¢ =21y, /(p.UD)
D Dilatation (D = 3u/ax + av/3y)
dy Normal grid spacing
] Jacobian (J = du/ax av/ay - du/3dy av/ax)
L.E. LeadingEdge
M_ Freestream Mach number
p  Pressure
PS Primary separation (same as Ps1)
PS1 First primary separation
PS2 Second primary separation

R Rupture
Re Chord Reynolds number (Re = U.c/v)
) Curvilinear surface coordinate

SS1  First secondary separation
§52 Second secondary separation

—
“Chief Scientist, Member ATAA
Executive Vice-President, Member AIAA

$S3  Third secondary separation
§S4 Fourth secondary separation
t Time, measured from the instant the no-slip
boundary condition is applied
TS1 First tertiary separation
Second tertiary separation
X-component of velocity
Freestream velocity
Y-component of velocity
Vortex
Coordinate aligned with the airfoil
Normal coordinate
Angle of attack
. Boundary layer thickness
Variation
. Circumferential grid spacing
Fluid kinematic viscosity
Fluid density
Wall shear stress
Q  Vorticity
Subscripts .
e  Evaluated at the outside edge of the boundary
layer
. F Vortex formation
inf Freestream value
LE Leadingedge
max Maximum
min Minimum
n  Normal
o Initial condition
t Tangential
w  Evaluated at the wall
0 Based on vorticity
«  Freestream value

g

pref<xa<ae
g 8

-~ D <
£

INTRODUCTION

In recent years, research into model problems of
unsteady flow separationl'5 has shown the propensity of
boundary layers to form eruptive plumes of vorticity.
Their connection to the dynamic stall®12 process at high
Reynolds numbers is discussed in Ref. 13. Specifically,
two types of eruptions are distinguished. The first one is
a vortex-induced eruption. This type is associated with
the secondary separation provoked by the presence ofa
primary vortex and with the subsequent, nonlinear,
induction which results from this interaction. This
eruption process has been observed!#® and computed'6
in a number of flows. The second type of eruption is
conjecturecl13 to be a spike-like boundary layer response
to the pressure gradient. This spike would presumably
occur on the upstream side of the primary separation
bubble, allowing boundary layer vorticity to spill away
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from the surface and eventually roll-up into the primary
vortex. Unfortunately, numerical simulations at low
Reynolds number do not seem to be able to predict this
second type of eruption.}” Numerical calculations are
possibly too diffusive, or cannot resolve some of the
critical sub-scale physics.1®113 Another possibility is
that the Reynolds number must be sufficiently large for a
sharp eruption to take place.!® The investigation of the
existence of a "bifurcation” in Reynolds number, i.e., the
possibility that a qualitative change in the behavior of the
flow might occur as the Reynolds number is increased, is
the subject of this study.

OBJECTIVE AND APPROACH

The objective of this work is to investigate in detail
the scaling of incipient laminar separation, vortex
formation, and shedding with respect to Reynolds
number. The study addresses the dynamics of vorticity
at the leading edge of a two-dimensional airfoil and has
application to dynamic stall. The specific goals are to
analyze the above scaling properties in terms of
topological changes of the flowfield, both volumetric and
on the surface of the airfoil.

The method of approach is to use numerical
simulations of a model problem, in which the airfoil
remains stationary at angle-of-attack, but for which the
leading edge flow separates as a result of impulsively
applying the no-slip boundary condition. This model
problem is well-suited for the desired investigation of
Reynolds number effects because the initial conditions
are independent of Reynolds number and because the
temporal and spatial scales involved are small. These
characteristics contribute to substantial savings in
computer resources, as compared to full calculations of
dynamic stall at "high" Reynolds number (say,
Re 2 100,000). The accuracy and reliability of current
turbulence models is insufficient for flow physics
investigations; therefore, the present investigation is
limited to "high" Reynolds number laminar simulations
of the two-dimensional Navier-Stokes equations.

No experimental data is available for this model
problem. Therefore, the accuracy of two-dimensional
Navier-Stokes simulations can only be validated by
means of careful grid convergence studies and by
comparisons between different simulations of the same
case. Two codes are used for this comparison: a version
of NASA Ames’s ARC2D Navier-Stokes solver!® using a
time-implicit integration mode and second-order spatial
accuracy, and a specially developed time-explicit eighth-
order accurate version referred to as ARC2D/8E.

RESULTS
Modal Problem
The study of a model problem was considered, in

which the airfoil is maintained at a fixed angle of attack
and the no-slip boundary condition is impulsively

applied. The surface boundary conditions are a
prescribed tangential slip velocity distribution u(s) for
t <0, and zero velocity for t z 0. The tangential slip
velocity at t < 0 is determined from the requirement that
Q,, = 0 everywhere at the surface. These boundary
conditions result in attached flow at t = 0 which has the
property of being independent of Reynolds number.
Subsequent to the application of the no-slip condition, an
unsteady flowfield develops. This flowfield is
characterized by the complete absence of trailing edge
separation over the time scales of interest, and the
existence of a well-defined time origin. These factors are
beneficial in terms of studying the initial stages of
leading edge dynamic stall, including scaling effects with
Reynolds number.

Based on our previous (unpublished) work on this
model problem, at least two distinct stages of the
incipient separation process are found. Stage I
corresponds to the formation of an initially symmetric
(bubble-shaped) separation of the thin primary vorticity
layer which lifts away from the surface. This stage
appears to exhibit qualitatively similar behavior between
Reynolds numbers over the investigated range (up to
500,000, based on chord), and ends with the beginning of
asymmetry (lopsided bubble), first evidenced by the
accumulation of vorticity in the reattachment region of
the separated vorticity layer.

In Stage II, the accumulated vorticity develops into
a vortex which subsequently induces a sequence of rapid
events, the first of which is the formation of a secondary
recirculation region at the surface. StageIl, in the
present context, is defined as ending with the "rupture”
of the feeding vortex sheet, and the subsequent
convection of the primary dynamic stall vortex.

Of the two stages distinguished above, Stage Il is
the most difficult one to compute, and issues of
adequacy of the numerical resolution, diffusion of the
vortices and steepness of the induced pressure gradients
are critical. At high Reynolds numbers, a second-order
method is extremely expensive if it is to capture the
essential physics. The special feature of ARC2D/8E is
the inclusion of a high-order accuracy scheme which
permits the extension of the model problem studies to
Reynolds numbers considerably larger than previously
possible (Re = 100,000 and up).

ARC2D/8E codae

The results presented here are obtained using the
high-order code ARC2D/8E. The computational method
consists of central, eighth-order, finite-difference spatial
discretization, and an explicit third-order Runge-Kutta
time integration scheme. Eighth-order accuracy is also
implemented for the calculation of the convective fluxes,
metric terms, and artificial dissipation. Viscous. filuxes
are computed with fourth-order accuracy. The order of
the central differencing scheme degenerates to second-
order at the wall. The high-order artificial dissipation
algorithm does not affect modes in the solution which
are accurately resolved by the discretization scheme.



The accuracy of the algorithm has been validated in
various studies.2%2! The advantage of the high-accuracy
scheme is that true accuracy can be attained for roughly
half of the grid-resolved wave number range. In
comparison, a second-order method is only accurate
over approximately 5 to 10% of the spectral range, while
spectral methods typically resolve approximately two
thirds of the theoretical range. Thus, only a few points
(on the order of five) are required to resolve a shear layer
with an eighth-order method. Such considerations are
critical when attempting to capture the physics of high
Reynolds number flows.

Flow Conditions and Grid Convergence Studies

Four Reynolds numbers have been investigated in
this study; these are (based on chord): 50,000, 100,000,
200,000, and 400,000. All simulations are for a fixed
angle of attack a = 15°, and fixed freestream Mach
number M_ = 0.2. The results shown here are all
computed for a NACA0012 airfoil with a rounded
trailing edge (radius of curvature r/c = 0.0092). This
ensures that the CFL requirements with the present O-
grid are not dictated by the trailing edge region. The
computational grids used in the present study are highly
clustered in the leading edge region of the airfoil. - An
example of a computational grid used in this study is
shown in Fig. 1. For this grid, 476 points were used in
the circumferential direction, 340 of which were placed
in the first 4% of chord on the upper surface of the
airfoil. For the grid convergence studies, the grid sizes
ranged from 224 to 476 in the circumferential direction,
and between 60 and 83 for the normal direction, with the
outer boundary located approximately seven chord
lengths away from the airfoil.

The effect of circumferential grid spacing is
illustrated in Figs. 2 and 3. Skin friction was used as a
sensitive indicator of the accuracy of the solutions.
Figure 2 (Re = 200,000, tU/c = 0.084) illustrates the
collapse of the calculated skin friction profiles in the
region of interest as the minimum circumferential
spacing, AXin /€, i8 reduced from 1.0x10_‘3 to 1.25x10%.
The minimum circumferential grid spacing is
representative of the grid in the critical region
0.01 s x/c s 0.04, where the grid was designed to be
nearly uniform in the streamwise direction. The last two
grid resolutions (A, /¢ = 2.5x10 and 1.25x10) yield
virtually identical results. The value Ax;,/c= 1.25x10%
was retained for Re = 200,000 and Re = 400,000, while
Axgin/c= 2.5x10* and Ax . /c = 5x10* were used for
Re = 100,000 and Re = 50,000, respectively. The test of
Fig. 2 is considered to be fairly stringent, as the
resolution requirements for the collapse of the C; profiles
become more demanding at large times. This form of
sensitivity to initial conditions is illustrated in Fig. 3 at
four different chordwise positions. Again, it is seen that
grid convergence is attained for Axp,/c = 2.5%104.

The effect of normal grid spacing at Re = 200,000 is
shown in Fig. 4. In this figure, the “error” is computed as
the L-1 norm of the difference between the skin friction
distribution and the "converged" skin friction

distribution at some fixed time instant during Stage 1.
The "converged" C; distribution corresponds to the best
grid resolution, characterized by a normal grid spacing
at the wall of dy;,/c = 1.25x10°5. Also indicated in Fig. 4
are the characteristic slopes associated with formal third-
and fourth-order accuracy. The data presented here is
seen to lie somewhere between the two, which is not
surprising since in Stage I the process is expected to be
viscous-dominated, and since fourth-order accuracy is
the maximum achievable for the viscous fluxes with the
present code. In general, lower than fourth-order
accuracy is expected near the wall, since the formal
accuracy of the differencing schemes degrades as one
approaches the boundary. Based on the result of Fig. 4, a
value of dyj,/c = 2.5x10 was selected for Re = 200,000
and 400,000. The same value was retained for
Re = 100,000, while a value of dy;./c = 5x1075 was used
for Re = 50,000. With these choices of parameters, the
normal grid spacing at the wall in the first 10% of chord
is better, in terms of viscous units, than Ayy, =1 on
average, and between 0 and 4 instantaneously.

Anatomy of the Flowfield

A typical time sequence of the developing vorticity
field in shown in Fig. 5. At the very initial stages, a
Stokes layer forms after the imposition of the no-slip
boundary condition. This is followed by the
development of a thin recirculation bubble along the
surface, the leading and trailing edges of which are
marked "PS" (primary separation). The bubble is initially
symmetric, but eventually becomes lopsided (see, for
example, t = 0.054 in Fig. 5). This marks the end of
StageI. Shortly after, a vortex forms some distance away
from the wall in the downstream region of the primary
recirculation zone. This vortex, in turn, induces a
secondary separation bubble. This first instance of
secondary separation is demarcated by the symbols S51,
visible for t z 0.069 in Fig. 5. As the separating primary
shear layer, or vorticity feeding sheet, experiences
instability and roll-up, multiple vortices form. As in the
case of the primary vortex, these induce new secondary
separation zones. For instance, the leading and trailing
edges of the second secondary separation are indicated
in Fig. 5 by the symbols S52. These multiple secondary
recirculation zones eventually strengthen to the point
where they too become vortices which, depending on the
Reynolds number, may induce a tertiary separation, and
soon. In Fig. 5, counter-clockwise vorticity is indicated
by dashed lines. From the last two graphs of Fig. 5, we
note that there is a point in time at which mutual
induction between the primary dynamic stall vortex and
the first secondary (counter-rotating) vortex leads to an
eruption of vorticity away from the wall. This eruption
appears to serve as.a trigger for the rupturing of the
vorticity feeding sheet, in agreement with Refs. 16
and 22. After the vortex sheet rupture, the primary
dynamic stall vortex is free to convect away from the
leading edge, as may be seen from the last graph of
Fig. 5.

A comparison of the pressure fields at the various
Reynolds numbers is given in Fig. 6 at tU/c = 0.102.



Although the different flowfields are not at the same
stages of development (the larger the Reynolds number,
the more advanced the solution), the presence of vortex
cores can be clearly seen from the existence of closed low
pressure contours. To accurately resolve the secondary
flows induced by these complex pressure fields, it is
important to capture as high a portion of the
wavenumber spectrum as possible. Thus, use of the
high-order accuracy code ARC2D/8E is essential at the
higher Reynolds numbers. As previously mentioned,
ARC2D/8E uses eighth-order linear and nonlinear
artificial dissipation. At the relatively high Reynolds
numbers considered in this study, a concern is the level
of artificial dissipation, compared to the "natural”
viscous dissipation of the flow. This comparison was
performed in a systematic manner at all Reynolds
numbers. For all cases investigated, the total flux
contribution due to artificial dissipation was less than
0.1% of the viscous contribution, in all vortical regions of
the flow. This ratio progressively increases away from
the body, as viscous fluxes become negligible and the
artificial dissipation increases due to the coarser grid
resolution.

Figure 7 depicts the space-time evolution of the
skin friction in the leading edge region of the flow, for
Re = 50,000 and Re = 200,000. Such surface
representations are found to correlate well with the
instantaneous topological structure of the flow. A
noticeable feature is the presence, particularly at the
higher Reynolds numbers, of a "latency” period (e.g.,
Fig. 7, 0.078 s tU/c s 0.090, Re = 200,000), during which
the vortex system grows in strength, with little change in
either size or position. This is a result of a nearly
stationary solution of the equations of motion. The end
of this latency period is associated with the "rupture” of
the vorticity feeding sheet and the release of the primary
vortex, as indicated in Fig. 7 by the change in slope of the
skin friction contours. Again, the phenomenon is more
clearly marked at the higher Reynolds numbers,
although the basic phenomenon is believed to be still
present at Re = 50,000. At the lower Reynolds numbers,
viscous diffusion tends to blur some of these effects.
Most of the calculations performed in this study are
stopped shortly after the end of Stage II, since our goal is
to study the physics of incipient vortex formation and
dynamic stall. At the final time instant of the
calculations, the released vortex has traveled a short
distance from the remainder of the attached vortex
system.

The space-time skin friction diagram of Fig. 6 can
be simplified somewhat by considering only the zero
contours of skin friction. In this manner, the resulting
lines delimit adjacent regions of forward and reverse
flow. This permits the identification of primary,
secondary and, if applicable, tertiary separation regions.
The resulting surface flow topology at Re = 100,000 is
shown in Fig. 8, where the symbols PS, 551, S§S2, TS1,
and TS2 designate respectively the onset of primary
separation, "first” secondary separation, "second”
secondary separation, "first” tertiary separation, and
"second" tertiary separation, as identified in Fig. 5. In

addition, "R" indicates the time of vortex sheet rupture,
corresponding to the end of the previously mentioned
latency period and the beginning of free convection of
the primary dynamic stall vortex. The solid symbols
indicate the trajectory of the topological "center”
associated with the instantaneous streamlines.
Reference 17 illustrates how critical point theory?> can be
used as a sensitive means to analyze the topology of the
velocity field. In particular, this work!7 was able to
pinpoint the origin of the primary stall vortex. Using
similar concepts, it is found in the present flowfields that
the critical points are "centers,” characterized by
essentially zero dilatation, D, and positive Jacobian, ].
Immediately after the onset of surface flow reversal in
Fig. 8 (marked "PS"), the value of the Jacobian nears zero
and, hence, the center is degenerate and its topology is
associated with pure shear. Although the center does
not become a vortex per se until approximately
tU/c = 0.057 (shortly before the onset of secondary flow
separation "SS1%), it is noteworthy that its trajectory
correlates well with the downstream edge of the primary
and induced secondary bubbles.

The relation between the topological center and a
vortex was elucidated by Perry and Chong.23 In the
present study, the point at which the center is associated
with the core of a vortex was found to be most clearly
defined by the pressure field. For a fairly long portion of
time during Stage I, (tU/c s 0.05 in Fig. 8), the vorticity
field topology corresponds to a lifted vorticity layer
beneath which a thin region of reverse flow exists.
During this potion, the location of the topological center
"rides" the vorticity line, gradually moving from front to
back and settling at about two thirds of the bubble
extent. In contrast to the rather benign behavior of the
vorticity during that portion, the end of Stage I is
marked by a sudden change from boundary layer-like
behavior (negligible normal pressure gradient) to vortex-
like behavior, characterized by the presence of closed
pressure contours associated with a low pressure core.
At later stages of the evolution of the flow, local pressure
and vorticity fields act to reinforce each other. The
vorticity accumulates further in the low pressure region,
and increased vorticity results in a further lowering of
the pressure. This interaction rapidly results in a formed
vortex and marks the beginning of what was referred to
earlier as Stage II. At that point, vorticity and pressure
fields associated with vortices are well-correlated. An
example at the end of Stage Il is given in Fig. 9. The top
graph in Fig. 9 illustrates the strong induced normal
entrainment of vorticity immediately "behind" the
(second) dynamic stall vortex at Re = 400,000. The
bottom graph shows the corresponding instantaneous
pressure field.

The connection between flowfield topology and
vortex formation is further explored in Fig. 10. In this
figure, the initial temporal increase of the Jabobian value
at the critical point is characteristic of the emergence of a
center, from pure shear to "pancake”-like to nearly
circular. After the point of vortex formation (associated
with the formation of a low pressure core), the Jacobian
increases further, with marked stages coinciding with



the onsets of secondary and tertiary separation. Most
importantly, the evolution of the formed vortex is
characterized by a distinctive drop in core pressure. This
feature was observed at all of the investigated Reynolds
numbers.

Reynolds Number Scaling

A comparison of zero skin friction diagrams for
Re = 100,000, Re = 200,000, and Re = 400,000 is given in
Fig. 11. Asin Fig. 8, the symbols indicate the times and
locations associated with the onset of flow separation
regions, and are generically indicated for Re = 400,000.
Although not repeated in the figure, the same symbols
also apply to the topological features associated with the
other Reynolds numbers. Also, note the presence of a
second primary separation (PS2). The latter was also
present at Re = 100,000, but is not visible on the scale of
Figs. 8 and 11. This second primary separation is
associated with a re-separation of the boundary layer
downstream of reattachment. As the Reynolds number
increases, the overall scale of the leading edge
bubble/vortex system diminishes, and the reattached
flow still experiences an adverse pressure gradient
which causes it to undergo a mild separation. The
evidence gathered thus far suggests that, over the
investigated range, this second primary separation is
completely independent and does not interfere with the
leading edge vortex system. For the purpose of clarity,
Re = 50,000 is not shown in Fig. 11. The important point
illustrated by this figure is the remarkable degree of
similarity, including details, between results at the
Reynolds numbers studied. This similarity is further
exploited, below, to extract basic scaling relationships.

Instantaneous vorticity fields for Re = 50,000,
100,000, 200,000, and 400,000 are compared in Fig. 12.
The value of the vorticity contours is kept identical
between the four flowfields. The time instant chosen for
this representation corresponds approximately to the
end of Stage I, i.e., the "rupture” of the feeding vortex
sheet and the subsequent release of the dynamic stall
vortex. The vortex systems in Fig. 12 differ primarily in
strength and scale but exhibit topological similarity.
This figure shows the relative physical scale of the

vortical flowfields as a function of Reynolds number.

Their qualitative similarity is seen more clearly in the
expanded views provided in Fig. 13.

From zero skin friction plots such as Fig. 11, one
can determine with reasonable accuracy the time of onset
of the various separation bubbles, as well as their
corresponding location. The scaling of the separation
time of onset with respect to Reynolds number is
summarized in Fig. 14. The lines in the plot correspond
to straightforward power fits, based on the four data
points. The time of incipient seEl)aration for the primary
bubble is found to scale as Re?1], while the first, second,
and third occurrences of secondary separation are found
to scale as Re 030, Re 040 and Re 04 respectively. For
reference, the Reynolds number scaling of the upstream
boundary layer is indicated in Fig. 15. It is clear that the
boundary layer thickness 8, at the leading edge of the

airfoil, scales as Re"1/2 within measurement uncertainty.
Therefore, the various separation events do not scale on
the upstream boundary layer thickness alone, as
expected from previous model flow separation studiesA”

As a final note, in addition to the scaling of
incipient bubble separation, the times and locations of
vortex sheet “rupture,” as well as those associated with
vortex formation, have been recorded for the
investigated Reynolds numbers. “Vortex formation” is
defined, rather imprecisely at this time, as the transition
between an elongated separation bubble (characterized
primarily by counter-flowing streams separated by a
shear layer) and a vortex structure (characterized by
significant normal momentum transfer and the existence
of a low pressure core). The time instants corresponding
to the primary separation onset (PS1), vortex formation,
and shear layer rupture are also shown (Fig. 16) to scale
approximately as simple power laws of the Reynolds
number. Specifically, the time instant corresponding to
vortex formation scales as Re%%7 while that of rupture
approximately scales as Re™04>, Similar power law
scalings are found to govern the location of these events,
as shown in Fig. 17.

If some form of boundary layer eruption leading to
the formation of the primary dynamic stall vortex were to
take place, modified scaling properties would be
expected from the emergence of new physics. In
particular, the vorticity spill-over associated with a
tightly focused eruption would presumably result in
early vortex formation and rupture. Instead, the present
results indicate a smooth scaling behavior and the well-
defined emergence, from the lifting vorticity layer, of a
topological center which precedes vortex formation.

CONCLUDING REMARKS

Preliminary results into the Reynolds number
scaling of two-dimensional incipient flow separation,
vortex formation, and rupture from its feeding sheet
indicate the existence of qualitatively similar behavior
between the chord Reynolds numbers of 50,000 and
400,000. The results obtained thus far appear to
contradict the hypothesis that a form of bifurcation may
take place at some intermediate laminar Reynolds
number: while the flow solutions obtained at Re = 50,000
are naturally more dissipative than for the highest
Reynolds numbers computed in this study, it remains

" that the sequence of phenomena leading to the release of

a simulated dynamic stall vortex bear strong qualitative:
similarities. In particular, times and locations of onsets

of specific dynamical events are found to scale according

to simple power laws of the Reynolds number, Re™?, with

0.11 s n s 0.45.
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COMPLEMENT TO AIAA PAPER NO. 94-2339

Several results not shown in AIAA Paper No. 94-2339 are summarized here to clarify
the methods used and provide further documentation of the cases computed in that paper.

Comparison between ARC2D/8E and ARC2D. As mentioned in Ref. C1, p. 2, no
experimental data is available to compare against the model semi-impulsive problem.
Therefore the accuracy of the calculations was verified by two means. The first one is
through careful grid convergence studies. The second was to compare the computed results
from two different codes. The two codes that were used in this study are NASA Ames’s
ARC2D Navier-Stokes finite difference solver, and a specially developed explicit eighth-
order accurate version named ARC2D/8E.

A summary of the grid convergence studies performed at Re = 200,000 is given in
Appendix B. These studies were carried out using the ARC2D/8E code. Appropriate
computational meshes for Re = 100,000 and Re = 400,00 were conservatively designed from
these results and from simple scaling laws relating grid spacing to Reynolds number. A
separate grid resolution study for the Re = 800,000 case is given in Appendix D. The present
section concerns an exercise which was not reported in Ref. C1, namely the comparison
between the results of the implicit second-order code ARC2DC? and the explicit eighth-
order code ARC2D/8E.

Figures C.1 through C.3 compare the vortical flowfield computed with ARC2D and
ARC2D/8E at successive times, tU/c = 0.030, 0.051, and 0.060, for the chord Reynolds
number Re = 400,000. The results are in good agreement, both qualitative and quantitative,
at short times. However, the ARC2D solution breaks down (Fig. C.3) at later times. This
behavior is consistent with the appearance of fine scales in the flowfield, the (numerical)
growth of which cannot be contained by the artificial dissipation scheme used in ARC2D. In
contrast, the solution remained stable throughout the calculation with ARC2D/8E. The
computational method used in ARC2D/8E consists of central, eighth-order, finite-difference
spatial discretization, and an explicit third-order Runge-Kutta time integration scheme.
Eighth-order accuracy is implemented for the calculation of the convective fluxes, eighth-
order for the metric terms, and eighth-order for the artificial dissipation. Viscous fluxes are
computed with fourth-order accuracy. The order of the central difference scheme
degenerates to second order at the wall. The high-order artificial dissipation algorithm does
not affect modes in the solution which are accurately resolved by the discretization scheme.
The accuracy of the algorithm has been validated in various studies.©>* The advantage of
the high-accuracy scheme is that true accuracy can be attained for roughly half of the grid-
resolved wave number range. In comparison, a second-order method is only accurate over
approximately 5 to 10% of the spectral range, while spectral methods typically resolve
approximately two thirds of the theoretical range. Such considerations are critical when
attempting to capture the physics of high Reynolds number flows, and are believed to relate
to the failure of ARC2D at large times.

From the results shown in Figs. C.1 and C.2, it is tempting to conclude that the use of
ARC2D might be justified provided that one is only interested in topological changes of the
flow at early times. Indeed, if it can be argued that ARC2D is as accurate as ARC2D/8E for a
specific purpose, then the implicit algorithm (resulting in higher Courant numbers and, thus,
less computational work) would seem more attractive. In reality however, ARC2D, when
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run with a CFL number of 15 produced poor results in comparison to ARC2D/8E, even for
the prediction of the time of first flow reversal at the surface. The results for ARC2D were
found only to begin to achieve time-step independence for CFL numbers lower than three.
This is illustrated in the surface flow topology diagram comparison of Fig. C.4. For
reference, ARC2D/8E was run with a CFL number of 1.5. Taking into account the extra
costs associated with matrix inversion, the computational savings associated with running
ARC2D, rather than ARC2D/8E, were minimal for this problem. Therefore ARC2D/8E was
the program of choice for this study. In Appendix D, results computed with ARC2D/8E for
a chord Reynolds number Re = 800,000 are presented.

From the ARC2D calculations with (At)a/c = 9.4x10™ (solid line in Fig. C.4) we show,
for completeness, the computed characteristic times associated with critical changes of the
surface flow topology during the early stages of flow development. These are indicated as
shaded symbols in the Reynolds number scaling plot of Fig. C.5. The open symbols
correspond to the ARC2D/8E runs at various Reynolds numbers, from Re = 50,000 to
Re = 400,000. Asin Appendix B, the notation used here is as follows: the time of first
occurrence of the primary flow separation is denoted "PS1." Successive times for the
occurrence of secondary flow separation regions are denoted (in their order of appearance)
"S51," "552," "6S3," etc. Similarly, tertiary separation is denoted "TS1," "TS2," and so on. The
results presented in Fig. C.5 indicate that the ARC2D determinations of PS1, SS1 and SS2 fall
within the uncertainty range of the power-law fits discussed in Appendix B.

Reynolds Number Scaling. Similarly to Fig. C.5, simple scaling relationships were given in
Appendix B for the times of primary vortex formation and primary vortex release (or
"rupture” of the feeding vorticity sheet). Figures 12 and 13, p. 12, of Appendix B illustrated
the qualitative similarity of the vortical flowfields at the end of Stage II. This qualitative
similarity is carried one step further in Fig. C.6. In this figure, instantaneous vorticity fields
for Re = 50,000, Re = 100,000, Re = 200,000, and Re = 400,000 are compared; the value of the
vorticity contours is kept identical between all four flowfields. The time instant is chosen to
be on the order of 15% (+ 2%) beyond the point of rupture of the feeding vorticity sheet. A
vortex-induced eruptive plume of vorticity is visible at the three higher Reynolds numbers
depicted in Fig. C.6. In all likelihood the flowfield at Re = 50,000 would also exhibit the
same type of eruption at a slightly later time. This is based on the overall similarity of the
flowfields and observations at higher Reynolds numbers at earlier times.

Further details of the temporal evolution of the flowfield at Re = 400,000 (Figs C.7
through C.15) reveal the existence of multiple vortex-induced eruptions (see, e.g., Fig. C.9).
After the end of Stage II (i.e., the rupture of the primary vortex feeding sheet), Reynolds
number similarity, in the sense described in Appendix B, is not observed. In addition to
multiple ejections, vortex pairing events take place. Some of these complex vortical
interactions take place earlier still at higher Reynolds numbers. This is described further in
Appendix D, for the Re = 800,000 case.
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FURTHER RESULTS ON THE REYNOLDS NUMBER SCALING
OF INCIPIENT LEADING EDGE STALL
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FURTHER RESULTS ON THE REYNOLDS NUMBER SCALING
OF INCIPIENT LEADING EDGE STALL

In Appendix B (AIAA Paper No. 94-2339), four Reynolds numbers were investigated.
These are (based on chord): Re = 50,000, Re = 100,000, Re = 200,000, and Re = 400,000. All
simulations were for a fixed angle of attack a = 15°, and a freestream Mach number
M_ = 0.2. The present appendix examines further results, obtained for Re = 800,000, and

how these affect the conclusions drawn in Appendix B. These results will be presented in
AIAA Paper No. 95-0780.

Grid Convergence Studies. The results shown here are computed for a NACA0012 airfoil
with a rounded trailing edge (radius of curvature r/c = 0.0092). This ensures that the CFL
requirements with the present O-grid are not dictated by the trailing edge region, which is
irrelevant to this study. The scaling relationships discovered in Ref. D1 provided guidance
in the design of the computational grids at Re =800,000, resulting in highly clustered meshes
in the leading edge region of the airfoil. The region of highest circumferential clustering
was located between x/c = 0.002 and x/c = 0.025. In that region, the circumferential spacing
was uniform, with either 470, 235, or 118 points, depending on the mesh.

Three computational meshes were constructed for the grid convergence studies
conducted at Re = 800,000. Each mesh is assembled as the union of two zones. The grid in
each zone is designed using NASA Ames’s GRIDGEN hyperbolic grid generation program.
This particular release of GRIDGEN (Version 2.0) allows for non-uniform initial spacing in
the marching direction (i.e., normal to the surface). The ability to prescribe a variable initial
grid spacing plays an essential role in the alleviation of CFL requirements at the trailing
edge. For example, in all of the grids used here, the initial trailing edge spacing normal to
the surface, Ay, is 40 times greater than the initial normal grid spacing at the leading edge
(Ay;g/c = 1.25x107°). An example of a computational grid used in this study is given in
Fig. D.1. For this grid, 666 points are used in the circumferential direction, 470 of which are
placed within 2.3% of chord (525 in the first 3%), on the suction surface. A detail of the first
(or "inner") grid zone is illustrated in the bottom graph of Fig. D.1. The inner grid zone
(666x32 points) surrounds the airfoil, and is characterized by a relatively mild stretching
factor, Ay;,/Ay; = 1.065. The outer grid zone extends radially approximately seven chord
lengths from the airfoil, with a stretching factor of 1.17. For all meshes the number of points
in the direction normal to the airfoil was 91, with an initial spacing at the leading edge
Ayig= 1.25x107°. The value of Ay g was conservatively chosen to be one half of the value
used at Re = 400,000 and Re = 200,000 (see Ref. D1).

It is worthwhile noting that, for the present problem, normal grid spacing is not an
issue and can be based on standard boundary layer scaling arguments. What is at issue is
the streamwise resolution needed, because of the possibility of self-focusing, eruptive
plumes of vorticity.P? The effect of circumferential grid spacing was investigated on three
computational meshes (666x91, 394x91, and 258x91), and is shown in Figs. D.2, D.3, and D.4.
The goal of this exercise is to find out when local grid independence is attained. By "local”
we mean "in the first three percent of chord,” where all of the important physics of incipient
separation take place (at this Reynolds number and angle of attack).

Skin friction was used as a sensitive indicator of the relative accuracy of the numerical

solutions. Figure D.2 illustrates the convergence of skin friction distribution between
0.5% chord and 3.0% chord, as the circumferential grid spacing is reduced from
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Axppin = 2.5%104 to Ax, = 6.25x10°. The results are shown at four instants in time ranging
from tU/c = 0.0375 to tU/c = 0.051. The two finest grids yield virtually identical results up
to 0.048 < tU/c < 0.051, just prior to the onset of the third occurrence of a secondary
separation bubble (S53). As previously observed at Re = 200,000, the accuracy of the
numerical solutions is subject to a form of sensitivity to initial conditions; given enough
time, two solutions will always diverge from one another, regardless of the resolution used.
This is more clearly illustrated in Fig. D.3, where the evolution of the skin friction "error" is
shown as a function of time. The skin friction "error" is defined as the L-1 norm of the
difference between a given skin friction distribution and the "converged" skin friction
distribution at some fixed instant in time. The "converged" C; distribution is taken to
correspond to the highest grid resolution case, which is characterized by
Axpin/C = 6.25x1075. This is, of course, an imperfect assumption but nothing substantially
better can be done. It is important to realize that the type of grid convergence study
considered here is local, not only spatially but temporally. The spatial and temporal
"regions” where the solution is determined to be accurate are the factors used in the choice
of an appropriate computational mesh. Because the 666x91 mesh gave grid-independent
results up to and beyond to point of vortex formation, it was considered adequate for the
present purpose, i.e.: to obtain grid-independent results for incipient leading edge
separation at Re = 800,000.

For completeness, the scaling of the skin friction error as a function of circumferential
grid spacing is indicated for various times in Fig. D.4. The purpose of such plots is to
determine the effective order of accuracy and degree of convergence of the method. The
characteristic slopes associated with formal first, second, third, and fourth-order accuracy
are also indicated (dashed lines) for reference. At small times, the scaling of error indicates
an effective order of accuracy which lies between third-order and fourth-order. Similar
results were obtained for the normal grid spacing study of Ref. D1 (Fig. 4, Appendix B) at
Re = 200,000. This result is expected because initially the process is essentially a boundary
layer process (i.e., viscous-dominated), and the viscous fluxes in the code are computed with
fourth-order accuracy. In general, however, lower than fourth-order accuracy is expected
because the formal accuracy of the differencing scheme degrades as one approaches the
boundary. The effective order of accuracy on the skin friction remains about third-order up
to tU/c = 0.0435, which will be shown to be beyond the time of primary vortex formation.
By tU/c = 0.051, the accuracy degrades to first order. This is, again, an indication that the
results should be interpreted with caution for tU/c > 0.048.

Atificial Dissipation. At the high laminar Reynolds numbers considered here, a possible
concern is the extent to which artificial dissipation alters the effective viscosity of the flow.
Therefore, the ratio between the added flux due to artificial dissipation, ¥4 p, and the total
viscous flux, ¥, (corresponding to the "natural" viscosity), was computed at every point
within the region of interest. The result for Re = 800,000 is shown in contour form in
Fig. D.5, at a time tU/c = 0.06. Typically, the ratio ¥p /¥, is closely tied (a) to the high-
wavenumber content of the solution, and (b) to the grid spacing. It will be shown that, at
tU/c = 0.06, multiple fully-formed vortices are present in the solution and that the surface
flow topology is complex, involving at least four distinct regions of secondary flow
separation and two regions of tertiary separation. Also, the reattachment occurs around
x/c = 0.025. Therefore the "active" vortical region of the flow extends roughly between 1.0%.
chord and 2.5% chord, and extends less than 0.5% in the direction normal to the surface. In
this region, the dissipation flux ratio, ¥4 p/'¥,, is seen to be less than 0.01%. The results
discussed above are representative of the overall study. Similar tests were conducted at all
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of the Reynolds numbers considered here (50,000 < Re = 800,000). In none of these tests did
¥,p/®, ever exceed 0.1% over the region of interest. Thus, there is a good degree of
confidence that the effective Reynolds number is indeed 800,000 for the results presented in
this section.

Flowfield Description at Re = 800,000. A time sequence of the developing vorticity field is
shown in Fig. D.6. At the very early stages (tU/c < 0.007), a Stokes layer forms after
imposing the no-slip boundary condition. The strong adverse pressure gradient eventually
causes the low momentum fluid near the wall to change directions. The formation ofa
primary recirculation region (designated "PS1") is initiated around tU/c = 0.016, at a
location indicated in Fig. D.6(b). This is followed by a period of spatial development ofa
thin recirculation bubble near the surface, the beginning and end of which are designated by
the symbol "PS1" in Figs. D.6(c), D.6(d), and D.6(e). The bubble is initially roughly
symmetric in shape about the location of maximum normal displacement, but eventually
becomes lopsided as vorticity accumulates in the reattachment region. This is visible, for
instance, at tU/c = 0.0375 (end of Stage D).

The evolution of the flowfield is fairly rapid after this point. Similarly to the Reynolds
number cases previously analyzed, a primary vortex forms in the downstream region of the
primary recirculation zone. This vortex, in turn, induces at the wall a region of secondary
flow separation. The extent of this secondary separation is indicated by the symbols "S51" in
Figs. D.6(f) through D.6(i). As time progresses, multiple vortices are formed as a result of
induction and of shear layer instability and roll-up. Two vortices are present at
tU/c = 0.045, three vortices at tU /c = 0.0525, four vortices at tU /c = 0.06, and five vortices at

tU/c = 0.0675. As in the case of the primary vortex, the successive shear layer vortices

induce new secondary separation regions. These multiple secondary recirculation zones
eventually strengthen to the point that they too become vortices. These secondary vortices
may induce tertiary separation. Using the same notation as in Appendix B, the successive
regions of secondary flow are denoted SS1, 5§52, SS3, etc., based on their order of
appearance. A similar convention is used for regions of tertiary flow separation, TS1, TS2,
and so on. Note that, for clarity, contours of negative vorticity are omitted from Fig. D.6.

Overall, the flowfield evolution at Re = 800,000, as depicted in Figs. D.6(a)
through D.6(h), bears strong qualitative similarity with previously observed results at lower
Reynolds numbers. For tU /c < 0.06, the main differences, aside from the usual spatial and
temporal scales involved, are the complexity of the flowfield and in particular the number of
successive shear layer vortices present in the solution at one time. For tU/c > 0.06, several
qualitative differences were observed, as compared to the results of lower Reynolds
numbers. At Re = 400,000, some differences were already observed, notably: the existence
of multiple vortex-induced eruptions (Appendix C). However, these differences with respect
to the behavior at lower Reynolds numbers occurred after the rupture of the primary
feeding sheet. At Re = 800,000 further differences are observed; these are described below.

The detailed events taking place between tU/c = 0.0675 (Fig. D.6(1)) and tU/c = 0.075
(Fig. D.6(j)) are depicted in Fig. D.7, using a smaller time increment between frames. Based
on the experience gained at the lower Reynolds numbers, the appearance of the vorticity
contours in Fig. D.6(i) suggests the most tenuous link in the vorticity feeding sheet to be
between the second and third vortices, rather than upstream of the primary vortex. Instead,
a rapid redistribution of the vorticity takes place between the two vortices, with much of the
vorticity of the second vortex flowing into the primary vortex. Simultaneously, the
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secondary and tertiary flow induced by the primary vortex begin to lift away from the
surface, "pinching off" what had begun to look like the merging of the first and second
primary vortices. This is clearly visible at tU/c = 0.069 and tU/c = 0.0698 in Fig. D.7. This
"pinching off" halts the merging process, eventually reversing it (i.e., splitting the primary
structure) at tU/c = 0.0705. This is, of course, a form of the vortex-induced eruptions
previously observed at Re = 100,000, Re = 200,000, and Re = 400,000. There is, however, a
key difference: at Re = 800,000 this eruption occurs underneath a vortex, primarily, rather
than between two vortices.

For tU/c 2 0.071, the primary vortex structure is no longer connected to its feeding
sheet and begins to convect downstream. Meanwhile, the split upstream portion of the
merged structure (referred to as "Vortex 2," for convenience) is engulfed into the third
vortex. Thus, although a vortex-induced eruption is also observed at Re = 800,000, many of
the details of the interactions surrounding this event differ from the lower Reynolds number
cases. In particular, the key event is the vorticity eruption itself, rather than the rupture of
the feeding sheet. For 50,000 < Re < 400,000 these events invariably coincided. In contrast,
at Re = 800,000, a rupture of the vortex sheet between vortices does not occur. Instead,
vorticity eruption takes place, and is sufficiently powerful to split the primary structure in
two. For consistency with the terminology previously used in this work, the event taking
place at tU/c = 0.0705 (Fig. D.7(c)) will be referred to as the point of "rupture,” in spite of the
fact that its significance is somewhat different than at lower Reynolds numbers. The results
of Fig. D.7 support previous conjectures that the vortex sheet rupture observed in other
calculations is indeed triggered by the eruptive plume of vorticity.

Dependence of Skin Friction on Reynolds Number. Figures D.8 through D.12 depict the
space-time evolution of the skin friction at Re = 50,000, Re = 100,000, Re = 200,000,
Re = 400,000, and Re = 800,000. Figures D.8 through D.12 characterize the instantaneous
surface flow topology, which typically correlates well with the key features of the overall
topological structure of the flow. Results on the pressure are presented in a subsequent
section of this Appendix.

The qualitative similarity between the surface flow topologies at the different Reynolds
numbers can be seen. As in Fig. D.6, the flow is always characterized initially by the
formation and development of a primary separation bubble. A vortex subsequently forms
in the downstream region of the bubble, inducing strong negative velocities (large negative
skin friction) and the formation of a secondary separation bubble. This scenario is very
much a recursive one: in time, a secondary vortex forms in the "downstream"” region
(upstream with respect to the main flow) of the secondary bubble, inducing strong positive
velocities (large positive skin friction) and, possibly, the formation of a tertiary separation
bubble. The presence of successive multiple vortices in the shear layer is clearly identified at
the surface by their induced secondary separation regions, i.e., the number of regions of
positive skin friction at any given x/c. As previously discussed, the number of formed
shear layer vortices is seen to increase with Reynolds number.

Comparing Figs. D.8 through D.12, the solution that was carried out the farthest in
time, relative to flowfield development, is at Re = 400,000. There, as well as at Re = 200,000,
a break-away point exists (the rupturing event) after which the primary vortex and
subsequent shear layer vortices start convecting downstream at a more rapid pace. This is
indicated by the change in slope of the contours on the x-t diagrams. In Fig. D.11, a pairing
can be identified by the cross-over of negative skin friction regions (around tU/c = 0.05 and




x/c = 0.095). This corresponds to the event depicted in Fig. C.13 of Appendix C. At
Re = 800,000 (Fig. D.12), the large negative skin friction region associated with the primary
vortex appears to suddenly end at tU/c = 0.073 and x/c = 0.025, instead of convecting
downstream, as in the lower Reynolds number cases. This behavior is the surface signature
of the event depicted in Fig. D.7(f), namely the ejection of vorticity and the lifting-away of
the primary vortex structure. Although such lift-away is also noticed at Re = 400,000
(Fig. D.11), it does not occur before the shedding of the primary vortex. Thus, the behavior
of the flowfield at Re = 800,000 does fundamentally and qualitatively differ from the
behavior observed for Re = 400,000. However, these qualitative differences all pertain to the
later stages of the incipient stall process namely, after the formation of the primary stall
vortex. We may speculate that, as the Reynolds number is increased further, the complex
vortex system will stay increasingly confined to the leading edge region before the eruption
occurs. This is in contrast to the behavior observed for Re < 400,000, in which the vortex
system was found to convect first, before breaking away from the surface.

The space-time skin friction diagrams of Figs. D.8-D.12 can be simplified to some extent
by considering only the zero contours, corresponding to a sign reversal of the skin friction.
In this manner, the lines delimit adjacent regions of forward and reverse flow at the surface.
This permits the identification of primary, secondary and, if applicable, tertiary separation
regions. The resulting surface flow topology diagrams are compared in Fig. D.13 for all five
Reynolds numbers investigated in this study. The symbols "PS," "SS," and "TS" refer to
primary separation, secondary separation, and tertiary separation, respectively. The
numeral that follows each of these symbols indicates the temporal order of appearance, so
that for example, "SS2" designates the second occurrence in time of a secondary separation
region, etc. The surface flow topologies at the various Reynolds numbers are seen to differ
in scale, both spatially and temporally. There is also a difference between Re = 800,000 and
the Re = 400,000 cases: at lower Reynolds number cases are characterized by a bulk motion
of the leading edge vortex system, corresponding to convection; in contrast, the surface flow
patterns at Re = 800,000 exhibit less bulk downstream motion, and more of a "break," as seen
in Fig. D.12. Apart from these differences, the important point of Fig. D.13 is the remarkable
degree of similarity, including many of the details, between surface flow topologies across
the Reynolds number range. In light of the newest results at Re = 800,000, the qualitative
similarity noted in Ref. D1 is found to hold, except after the point of vorticity eruption. This
is, again, because the vortex-induced eruption at high Reynolds number does no longer
coincide with the rupture of the vorticity feeding sheet as in Appendix B.

Dependence of Pressure Coefficient on Reynolds Number. The space-time evolution of the
pressure field at the surface is documented in Figs. D.14 through D.18. Close examination of
the pressure coefficient contours reveals many of the same conclusions drawn from the skin
friction. Low pressure areas associated with the presence of vortices and high-pressure
ridges associated with flow impingement immediately downstream of these vortices are
noticeable features of the flow at all Reynolds numbers. The relief of the low pressure
region downstream of the leading edge, as the boundary layer and separation bubble form,
is also apparent.

By taking successive "horizontal cuts" of Figs. D.14-D.18, one obtains a more
quantitative description of the pressure distribution and its temporal evolution. The.
resulting C,, distributions are shown in Figs. D.19-D.23. To further illustrate the qualitative
similarity of the flowfields, the total time period shown in each figure corresponds to 6.4%
beyond the time of rupture. For each Reynolds number this period is divided equally into




17 time increments. In the first frame of each figure, the decrease of the peak suction and
the relief of the pressure gradient downstream of the leading edge are apparent. The
development of the primary separation bubble is associated with a lowering of the pressure
in the downstream part, followed by a relative increase in the pressure due to the stagnation
point. The associated adverse pressure gradient is subsequently characterized by a sharp
steepening during and after the period of formation of the primary stall vortex. This stage
typically corresponds to the second frame in each figure. Finally (third frame), multiple
primary and secondary vortices form, greatly complicating the interpretation of the surface
pressure signature. Eventually, eruption occurs (corresponding to the time-trace before
last), and the vortex system starts convecting (last trace in each figure). Again, the
qualitative similarity between Reynolds numbers is observed.

We conclude this section with the calculation of the streamwise pressure gradient. For
dynamic stall, the pressure gradient is by farD3 the largest contributor to the production of
vorticity at the wall. In the absence of blowing/suction or surface acceleration, the pressure
gradient is directly proportional to the diffusive normal vorticity flux at the surface.P4 It is
useful, therefore, to attempt to obtain insights into the vorticity production process from
inferences based on the pressure gradient. This approach was used, e.g., by Acharya and
Metwally (Ref. D5) to show the existence of a "spike" in vorticity flux near the leading edge
of a pitching airfoil at 88,000 = Re = 120,000. For convenience, the streamwise derivative of
the C,, distribution, aC_/3x, was directly computed, rather than the true tangential
derivative, 8C,,/ds. For tge present purpose, this makes no difference, since the same airfoil
at the same angle of attack is used at all Reynolds numbers. The result is shown in
Figs. D.24-D.28. The complicated spatio-temporal patterns which follow the evolution of
the vortices are the most noticeable feature, but are of little interest in terms of discerning
the origin of vortex formation, at least in the sense argued in Ref. D2.

The results obtained in the present study do not support the interpretation that the
sudden appearance of an initial eruptive plume of vorticity (which would presumably be
associated with a spike in vorticity flux) is responsible for the formation of the dynamic stall
vortex. Instead, the present problem is characterized by the continuous presence of a strong
vorticity flux near the leading edge. This vorticity flux is indeed the source of the vorticity
feeding sheet. With time, this vorticity sheet lifts from the surface, creating a thin separation
bubble, and eventually leads to the formation of the primary stall vortex. In this process, no
qualitative differences were found across the investigated Reynolds number range. A
consistent behavior for all Reynolds numbers is the initial decrease in the magnitude of the
vorticity flux (Figs. D24-D.28). This initial decrease is associated with the formation of the
viscous boundary layer, which changes the effective shape of the airfoil and, thus, relieves
the pressure gradient. This is fundamentally different from the occurrence in time of a spike
in the vorticity flux, and may be an artifact of the present model problem. We note,
however, that for Reynolds numbers exceeding 100,000 (Figs. D.25-D.28), the leading edge
vorticity flux eventually increases again. Whether this has any connection with the
formation of a spike (in the sense of Ref. D2) is, at best, speculative at this time. In any
event, such strengthening takes place (for the present problem) after the formation of the
dynamic stall vortex, which is more closely connected to the initial flux after the imposition
of the no-slip boundary condition.

Incipient Vortex Formation. The manner in which the point of vortex formation is
determined was alluded to in Appendix B. The present section attempts to clarify the
methods used to determine both incipient vortex formation and the relation between the
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topological "center" and a vortex, based on the results at Re = 800,000. "Vortex formation"
can be defined as the transition between an elongated recirculation bubble (characterized
primarily by counter-flowing streams separated by a thin shear layer) and a "fully-formed"
vortex structure (characterized by significant momentum transfer normal to the wall and
the existence of a low-pressure core).

In an attempt to quantitatively define the point of vortex formation, consider the
temporal evolution of the pressure, Fig. D.29. At short times, the pressure field closely
resembles the potential flow pressure field, with the exception of a small region of zero
normal pressure gradient near the wall (the boundary layer). This can be seen, for example,
in Fig. D.29(a). At tU/c 2 0.03 the pressure gradually lowers for x/c < 0.02 while
simultaneously increasing downstream of that point (see also Fig. D.23). Around a time
tU/c = 0.037, the topology of the pressure field undergoes a transformation, namely the
existence of pressure extrema away from the airfoil surface. The closed contours of
minimum pressure coincide with the core of the nascent vortex. At that point, the evolution
of the flowfield is very nonlinear: the low pressure core contributes to the further
accumulation of vorticity in the vortex. The increased vorticity in turn increases the radial
pressure gradient, and so on, until the vortex is fully formed. By tU/c = 0.045 (Fig. D.29(g)),
a second shear layer vortex has also formed, as indicated by the presence of low pressure
cores. In the following, the transition of the pressure field from a boundary-layer-like
behavior (i.e., 9p/dy = 0) to one characterized by the existence of closed low-pressure
contours away from the surface is defined as the point of vortex formation (in this case:
tVFU/ c= 0037)

An important element is to establish the origin of the vortex, before it forms. To this
end, and following the methodology used in Refs. D6 and D1, we use Perry and Chong’sP’
critical point theory. Knight and Choudhuri (Ref. D6) have shown how critical point theory
can be used as a sensitive means to analyze the topology of the velocity field. In particular,
these authors were able to pinpoint the origin of the dynamic stall vortex for a pitching
airfoil at Re = 10,000. Using similar concepts, it can be shown that the critical points are
"centers,” characterized by essentially zero dilation, D = du/3x + 3v/dy, and positive
Jacobian, ] = (3u/ax)(3v/3y) - (3u/ay)(av/ax). Fig. D.30 exemplifies the method used to
determine the location of the topological center. In this example (Re = 400,000, tU/c = 0.03),
there is no vortex. The inset in Fig. D.30 shows the actual aspect ratio of the developed
recirculation bubble. The grey contours in Fig. D.30 (both inset and main figure) are low
Mach number contours (M = 0.01) which help demarcate both the surface flow and the shear
layer. The main figure is obtained by rotating and stretching the coordinates, as indicated
by the (x-y) reference arrows. Also present in the figure are instantaneous streamlines
which delineate the location of the center.

Close examination of such pictures at successive instants in time reveals that the
presence of a topological center emerges very shortly after the onset of surface flow reversal.
Immediately after applying the no-slip condition, the Jacobian is zero at the surface,
indicating a “pure shear" situation. After the onset of flow reversal, the value of the jacobian
] nears zero ("degenerate center"), then rapidly becomes positive (“center"). For a fairly long
period of time corresponding to the development of the recirculation bubble, the center
moves downstream, within the primary bubble, but does not correspond to a vortex. The.
later stages of this evolution are exhibited, for example, in Fig. D.31, which shows both
instantaneous pressure contours and streamtraces for the Re =100,000 case. As previously
noted, the presence of a vortex is characterized by significant momentum transfer normal to



the wall and the existence of a low pressure core. In Fig. D.31, this occurs between
tU/c = 0.054 and tU/c = 0.06. In all of the cases examined, the topological center is clearly
the precursor of the stall vortex. Its trajectory is indicated by the dark symbols in the
surface topology plot of Fig. D.32. The behavior at Re = 800,000 is, again, qualitatively
similar to the behavior observed at lower Reynolds numbers, for instance: Fig. 8 of
Appendix B, for Re = 100,000. In particular, until the point of vortex formation (marked
"VF" in Fig. D.32), the topological center moves towards the two-thirds downstream
location within the primary bubble. After that point, its trajectory correlates well with the
downstream edge of the primary and induced secondary bubbles.

The connection between flowfield topology and vortex formation is further explored in
Fig. D.33. In this figure, the initial temporal increase of the Jacobian value at the critical
point is characteristic of the emergence of a center, as discussed in Appendix B. After the
point of vortex formation the Jacobian increases further; however, this growth shows no
sign of correlation with the onset of secondary flow features, as was suggested at
Re = 100,000 (Fig. 10, Appendix B). The dark symbols in Fig. D.33 show how vortex
formation is characterized by a drop in core pressure. This feature was observed at all of the
investigated Reynolds numbers.

The following is a summary of the topological evolution of the flow at Re = 800,000.
For a fairly long portion of time during Stage I, (tU/c < 0.038 in Fig. D.32), the vorticity field
topology corresponds to a lifted vorticity layer beneath which a thin region of reverse flow
exists. During this portion, the location of the topological center "rides” the vorticity line,
gradually moving from front to back and settling at about two thirds of the bubble extent.
In contrast to the rather benign behavior of the vorticity during that portion, the end of
Stage I is marked by a sudden change from boundary layer-like behavior (negligible normal
pressure gradient) to vortex-like behavior, characterized by the presence of closed pressure
contours associated with a low pressure core (Fig. D.29). At later stages of the evolution of
the flow, local pressure and vorticity fields act to reinforce each other. The vorticity
accumulates further in the low pressure region, and the increased vorticity results in a
further lowering of the pressure. This interaction results in a formed vortex and marks the
beginning of what was referred to earlier as Stage Il At that point, vorticity and pressure
fields are well-correlated.

Reynolds Number Scaling. To complete the Reynolds number scaling investigation initiated
in Ref. D1, the data obtained at Re = 800,000 was processed in a fashion similar to that
described in Appendix B. Figure D.34 shows the scaling with respect to Reynolds number
of the time instants corresponding to the onset of flow reversal (PS1), vortex formation, and
shear layer "rupture.” The previously obtained power-law curve fits for
50,000 = Re = 400,000 are indicated by the lines in Fig. D.34. The data at Re = 800,000
establish a noticeable departure from previous power-law scalings. In particular, both
vortex formation and rupture occur "late," relative to the expected scaling based on the
lower Reynolds number data. Of course, "rupture" of the feeding vorticity sheet per se did
not take place at Re = 800,000. Instead, the vortex-induced eruption ended-up splitting the
merged primary vortex. This event is depicted in Fig. D.7 (frames (b) and (c)). It is not clear
at this point whether the delay of the rupturing event at Re = 800,000 can be accounted for
by the altered definition of "rupture” alone. This is, in fact, unlikely, because of the
coincidence of the feeding sheet rupture with vorticity eruption for Re < 400,000. One of the
key differences at the higher Reynolds number is the presence of pairing/merging events

D-10



before shedding occurs. Additionally, even the point of vortex formation appears to be
somewhat delayed at Re = 800,000. This issue is explored further below.

In an attempt to understand further the scaling properties of incipient dynamic stall
with respect to Reynolds number, the boundary layer thickness was calculated. Its scaling is
shown in Fig. D.35. The boundary layer thickness, 8, g, was defined as follows. The
temporal growth of the boundary layer (initially a Stokes layer) was monitored at the
leading edge, and was recorded once it reached steady-state (typically for tU/c = 0.006). For
convenience, 8q 1 was defined as the normal distance from the wall at which the vorticity
is 10% of its value at the wall. Thus, &4 is not the vorticity thickness but, rather, a
measure of boundary layer thickness based on the normal damping of the vorticity profile.
For reference, &, 1 corresponds in the case of a Blasius boundary layer to
n=y(U._/vx)1/2 = 452, or 6.8 momentum thicknesses ("U/U," = 0.98). The slope of the
power-law curve fit (solid line in Fig. D.35) is approximately -1/2, as expected for a laminar
boundary layer.

The Reynolds number scaling shown in Fig. D.34 can, thus, be re-examined using
different length scales than the airfoil chord. Indeed, the chord ¢ (including in the definition
of the Reynolds number) is rather irrelevant to the processes involved in incipient leading
edge stall. Three alternative length scales are considered: b (the leading edge radius of
curvature), 8,1 g (upstream boundary layer thickness), and the viscous penetration length,
(v)1/2, The latter is a natural candidate for the initial stages of the flow development,
which are essentially similar to those occurring in Stokes” first problem. The re-scaled times
tU/b, tU/8q 1, and tU/ (vt)1/2 are shown in Fig. D.36. The Reynolds number scaling of the
various times of onset is, of course, not expected to change by using b as the length scale,
since the airfoil is the same and since b does not change with Reynolds number. The bottom
two frames of Fig. D.36 suggest the following observations: (1) temporal normalization
using boundary layer (8, 1 g/U) or viscous ((vH)}/2/U) time scales does not collapse the
data, and (2) the relative tardiness of the vortex formation time appears to be eliminated by
using either (8 y/U) or ((vt)1/2/U). Of note is the almost perfect fit of the primary
separation time of onset, when non-dimensionalized using the viscous length scale (bottom
frame). The results of Fig. D.36 indicate that none of the characteristic length scales
considered here make any of the recorded events Reynolds number independent.
Furthermore, no single scale can be expected to collapse all of the data. This points to the
existence of a hierarchy of scales, a view somewhat consistent with Ref. D8.

Finally, using the additional candidate length scales (8 1 g and ( v)1/2), we re-examine
the scaling of the times of onset of the primary and secondary recirculation bubbles, adding
the Re = 800,000 case to the data presented in Appendix B. This is given in Fig. D.37. Again,
the data appear to scale according to simple power-laws of the Reynolds number. No single
time scale collapses any of the measured variables. With the exception of the rupturing
event at Re = 800,000, it may be concluded from the qualitative self-similarity exhibited in
Figs. D.36 and D.37 that the present study does not support the hypothesis of a Reynolds
number bifurcation under laminar flow conditions.

Auxiliary Results. For completeness, the temporal evolution of the overall force coefficients
for lift, drag, and moment are included in this report (Figs. D.38-D.40). Note that the results
in Figs. D.38-D.40 are presented for tU/c > 0. No attempt is made to interpret these results
in connection with the leading edge dynamic stall phenomena described in Appendices B,

C,and D. This is because Cy, Cp, and C,, are, to a large extent, determined by conditions at
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the trailing edge. Since the present geometry considers a rounded trailing edge, the
unsteady Kutta condition allows for the rear stagnation point to move, both in time and
with Reynolds number. The details of this region of the flow, although critical for lift and
drag, are largely irrelevant in the context of the present study. A natural question is to ask
whether the choice of an airfoil geometry was the correct one, considering the specific goals
of the research. With the presently clustered computational grids (notably at Re = 400,000
and 800,000), the cost of the computational grid points associated with the airfoil (O-grid)
geometry accounts only for a fraction of the total computational cost. This fraction
decreases with increasing Reynolds number. In addition, the use of an airfoil ensures that
the proper pressure gradient is imposed, without having to experiment with approximate
boundary conditions.

Finally, we conclude this appendix with the documentation of the temporal evolution
of the vorticity fluxes at the leading edge. Although for different conditions (Re = 12,000
pitching airfoil), Appendix A addressed the issue of predictability of the leading edge
vorticity fluxes before and during the dynamic stall process, by means of a modified version
of indicial theory. One of the important results was the conclusion that, although difficulties
remained for predicting the fluxes directly, it appeared that a prediction of the vorticity
accumulation based on indicial theoretical concepts is possible. For nonlinear motions
(Aa ~ 5°), this prediction is a relative one, permitting accurate prediction of one airfoil
maneuver from the knowledge of another. The potential applications of these findings were
never fully exploited in the course of the present study, in part because of changes in A.R.O.
research priorities part-way through the research. In an attempt to begin bridging this gap,
the last three figures document the evolution of the integrated tangential and normal fluxes
of vorticity in the present semi-impulsive problem at Re = 800,000.

Figure D.41 depicts the temporal evolution of the normally-integrated tangential
vorticity flux, @, at 0.0032 = x/c = 0.0282. At all locations, the flux is strongly dominated by
the initial conditions of the present problem; notably, all fluxes initially decrease until the
point of vortex formation. Figure D.42 documents the temporal evolution of the normal
flux of vorticity, ®,, tangentially integrated between x/c = 0.0 and x/c = 0.03. The normal
flux is shown at two locations: at the wall (solid line) and at 0.03% chord away from the
wall. As in the case of ®,, the behavior of the normal flux at the wall is initially dominated
by its relaxation from the initial conditions. The temporal growth of the boundary layer can
also be correlated to the initial increase (0 = tU/c < 0.006) in @, away from the wall. This
flux peaks and subsequently decreases just prior to the point of vortex formation ("VF").
Figure D.43 shows the evolution of the vorticity accumulation in the first 3% of chord. Also
indicated for reference are the times of onset corresponding to primary separation (PS1),
vortex formation (VF), secondary separation (551, 552, 553, 554), and rupture (R). Afterits
initial decrease, it is noteworthy that the vorticity accumulation begins to increase around
tU/c = 0.03, which happens to coincide with the simultaneous strengthening of the
topological center and the reduction in core pressure, as shown in Fig. D.33. More complete
analyses of pitching/oscillating airfoil data need to be performed before one can establish a
correlation between vorticity accumulation and incipient vortex formation. Should such a
correlation exist, then the results of Appendix A imply that a semi-analytical prediction of
dynamic stall is possible.
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Fig.D.6 Temporal Evolution of the Vorticity Field at Re = 800,000. (Arrows indicate
locations of skin friction sign reversal). (Continued on next page).
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Fig. D.19 Pressure Coefficient Distribution as a Function of Time, Re = 50,000.
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Fig. D.29 Temporal Evolution of the Pressure Field

Hlustrating Vortex Formation at Re = 800,000.
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Fig. D.36 Alternate Reynolds Number Scaling of Onset Times for Primary Separation,
Vortex Formation, and Rupture, Using Various Characteristic Length Scales
(Top: Radius of Curvature, Center: Boundary Layer Thickness, Bottom: Viscous
Length Scale).
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